1) Для начала построим данное сечение: Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками: а) Можно соединять только две точки, лежащие в плоскости одной грани. Точки В и С лежат в одной плоскости, значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы. Точки В и К лежат в одной плоскости → получаем отрезок ВК б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам. Грани ВВ1С1С и АА1D1D параллельны В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 ) Через точку К проводим прямую, паралельную прямой ВС → получаем точку L. Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 ) Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1 Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL. Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС. Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна: S bclk = 1/2 × ( KL + BC ) × KM 48 = 1/2 × ( 4 + 8 ) × КМ 48 = 6 × КМ КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°): cos AMK = AM/KM AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см По теореме Пифагора: КМ² = АМ² + АК² АК² = 8² – 4² = 64 – 16 = 48 АК = 4√3 см АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле: V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
1)дано: циліндр, авсd- переріз, вd-діагональ, r=ао=од=6 см, кут вdа=60 градусівзнайти: ав, s abcdз трикутника вdа ( кут ваd= 90 градусів)tg60= ab/ad ad=ao+od=12 смab=ad tg60ab=12 * корінь з 3осьовим перерізом є прямокутник, отжеs=ab*ads=12коренів з 3 * 12=144 корінь з 3 (см2)
2)осьовим перерізом є прямокутник, а прямокутник, у якого діагоналі перпендикулярні - це квадрат, отже висота = 2r=10 см3) з трикутника аво во=r=5см, к-середина ав, ко=4см,з трикутника вок (кут вко = 90 градусів)за т.піфагора вк= корінь квадратний 25-16= 3 смав=2вк=6 смас=h=8 cмs= 8*6=48 (cм2)4) ао=r=5см, ka і кв - твірні, ka=13 cм , sakb-? з трикутника коа (кут коа=90 градусів)ко=корінь з 169-25=корінь з 144=12s=ав*ко/2 ав=ao+ob=10s=10*12/2=60 (см2)
Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками:
а) Можно соединять только две точки, лежащие в плоскости одной грани.
Точки В и С лежат в одной плоскости,
значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы.
Точки В и К лежат в одной плоскости → получаем отрезок ВК
б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Грани ВВ1С1С и АА1D1D параллельны
В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 )
Через точку К проводим прямую, паралельную прямой ВС → получаем точку L.
Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 )
Точки C и L лежат в одной плоскости → получаем отрезок CL
Из этого следует, что четырёхугольник BCLK – данное по условию сечение.
АВСD – равнобедренная трапеция → АВ = CD
Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1
Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL.
Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )
2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС.
Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.
3) Площадь трапеции BCLK равна:
S bclk = 1/2 × ( KL + BC ) × KM
48 = 1/2 × ( 4 + 8 ) × КМ
48 = 6 × КМ
КМ = 8 см
Рассмотрим ∆ АМК (угол КАМ = 90°):
cos AMK = AM/KM
AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см
По теореме Пифагора:
КМ² = АМ² + АК²
АК² = 8² – 4² = 64 – 16 = 48
АК = 4√3 см
АА1 = 2 × AK = 2 × 4√3 = 8√3 см
Обьём прямой призмы рассчитывается по формуле:
V ( призмы ) = S осн. × h
V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²
ОТВЕТ: V ( призмы ) = 192√3 см²