В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
sun54
sun54
10.07.2022 21:58 •  Геометрия

Докажите что при симметрии относительно точки прямая переходит в параллельную ей прямую (или в себя)

Показать ответ
Ответ:
alinashakeeva
alinashakeeva
06.10.2020 08:23
А) По известной теореме через центр симметрии и данную прямую можно провести единственную плоскость.

Пусть О — центр симметрии, а — данная прямая, α — плоскость, проведенная через О и а.

Пусть А ∈ а, построим отрезок ОА.

Продолжим ОА за точку О на расстояние ОА1=АО. Получим точку А1, симметричную А.

Пусть В ∈ а, построим отрезок ОВ. Продолжим ОВ за точку О на расстояние ОВ1=ОВ. Получим точку B1, симметричную точке В.

Через А1 и В1 проведем прямую b. Рассмотрим ΔAОВ и ΔА1ОВ1⋅AО=А1О, ВО=ОВ1, ΔАОВ=ΔА1ОВ1 как вертикальные, следовательно, ΔAОВ=ΔА1ОВ1.

Тогда, ∠1=∠2 и а || b.

б) Пусть А ∈ а. Симметричная ей точка А1 тоже принадлежит прямой а; АО=ОА1.

Точка А произвольна, следовательно, любая точка прямой, а также симметричная точка относительно центра О лежат на прямой а, следовательно, прямая а переходит сама в себя при условии, что проходит через центр симметрии.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота