Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
SO высота пирамиды, а OK,OM,ON - серединные перпендикуляры и радиусы вписанной окружности, равные между собой.
Чтобы найти радиус, воспользуемся формулой площади S=pr и
S=0,5*6*8=24 см^2 Тогда r=S/p, где р- полупериметр =(6+8+10)/2=12, r=24:12=2 см
Треугольник SOM прямоугольный с углом 60 и 30 градусов, при вершине угол 30 градусов, катет напротив этого угла равен половине гипотенузы, значит гипотенуза (высота боковой грани) SM = 2r=4 cм
Боковая сторона равнобедренного треугольника делится точкой касания вписанной окружности в отношении 2 : 3, считая от вершины угла при основании треугольника. Найдите основание треугольника, если его боковая сторона равна 15 см
Объяснение:
ΔАВС, АВ=ВС=15 см, К, Р, М-точки касания окружности сторон АВ,ВС,АС соответственно,АК/КВ=2/3. Найти АС.
Отрезок АВ , по условию , состоит из 5 частей или 15 см⇒
1 часть равна 3 см. Тогда АК=6см .
Т.к. АВ=ВС, то СР/РВ=2/3.
По свойству отрезков касательных , проведенных из одной точки :
АК=АМ=6 см, МС=СР=6 см ⇒ АС=АМ+МС=6+6=12(см)
SM = 4 cм
Объяснение:
найдем гипотенузу основания по теореме Пифагора
АВ= =10
SO высота пирамиды, а OK,OM,ON - серединные перпендикуляры и радиусы вписанной окружности, равные между собой.
Чтобы найти радиус, воспользуемся формулой площади S=pr и
S=0,5*6*8=24 см^2 Тогда r=S/p, где р- полупериметр =(6+8+10)/2=12, r=24:12=2 см
Треугольник SOM прямоугольный с углом 60 и 30 градусов, при вершине угол 30 градусов, катет напротив этого угла равен половине гипотенузы, значит гипотенуза (высота боковой грани) SM = 2r=4 cм