Докажите, что сумма внешних углов выпуклого многоугольника, взятых по одному при каждой вершине, равна 360°
2. Докажите что в параллелограмме противоположные стороны равны и противоположные углы равны.
3. Докажите, что диагонали параллелограмма точкой пересечения делятся пополам.
4. Докажите, что если в параллелограмме диагонали равны, то параллелограмме является прямоугольником.
5. Приведите примеры фигур, обладающих: а) осевой симметрией; б) центральной симметрией; в) и осевой, и центральной симметрией.
Общепринято, что доказательство соотношения данодревнегреческим философом Пифагором (570—490 до н. э.). Имеется свидетельство Прокла (485—410 до н. э.), что Пифагор использовал алгебраические методы, чтобы находить пифагоровы тройки[⇨][4][5], но при этом в течении пяти веков после смерти Пифагора прямых упоминаний о доказательстве его авторства не находится. Однако, когда такие авторы как Плутарх и Цицерон пишут о теореме Пифагора, из содержания следует, будто авторство Пифагора общеизвестно и несомненно:[6][7]. Существует предание, согласно которому Пифагор якобы отпраздновал открытие своей теоремы гигантским пиром, заклав на радостях сотню быков[8].
Приблизительно в 400 году до н. э., согласно Проклу, Платон дал метод нахождения пифагоровых троек, сочетающий алгебру и геометрию. Около в 300 года до н. э. в«Началах» Евклида появилось старейшее аксиоматическое доказательство теоремы Пифагора[9].
Величина угла АВС равна 110.
Объяснение:
Поведем дополнительное построение. Из точки М, на сторону АВ проведем медиану МК. По условию, АВ = 2 * МВ, тогда АК = ВК = АВ / 2 = МВ.
Тогда треугольник ВКМ равнобедренный, а следовательно угол ВКМ = ВМК = (180 – 40) / 2 = 70. Точка М середина стороны АС, точка К середина стороны АВ, тогда отрезок МК средняя линия треугольника АВС. Тогда АС параллельно МК.
Угол СВМ = ВМК = 70, как накрест ежащие углы при пересечении параллельных прямых ВС и МК секущей ВМ, тогда угол АВС = АВМ + АВМ = 70 + 40 = 110.