Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
Котангенсом называется отношение прилежащего углу катета к противолежащему. Угол АВС - тупой. .Косинус, тангенс и котангенс тупого угла равны отрицательным значениям смежного ему острого угла.
Найдем на прямой АВ точки, в которых она проходит точно по вершинам клеточек. Таких точек две ( на рисунке это К и М). Проведем по линиям клеток прямую КН параллельно ВС и прямую МН до пересечения с КН.
Треугольник МКН - прямоугольный. ∠МКН=∠МВС как соответственные при пересечении параллельных прямых КН и ВС секущей АВ. ctg(MBC)=ctg(MKH)=HK/MH=3/4. ⇒ ctg(ABC)= -3/4
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
Котангенсом называется отношение прилежащего углу катета к противолежащему. Угол АВС - тупой. .Косинус, тангенс и котангенс тупого угла равны отрицательным значениям смежного ему острого угла.
Найдем на прямой АВ точки, в которых она проходит точно по вершинам клеточек. Таких точек две ( на рисунке это К и М). Проведем по линиям клеток прямую КН параллельно ВС и прямую МН до пересечения с КН.
Треугольник МКН - прямоугольный. ∠МКН=∠МВС как соответственные при пересечении параллельных прямых КН и ВС секущей АВ. ctg(MBC)=ctg(MKH)=HK/MH=3/4. ⇒ ctg(ABC)= -3/4