Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
Сумма углов любого треугольника равна 180° 1) 180° - (48° + 48°) = 84° В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90° В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95° В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный. ответ: А - 2; Б - 1; В - 3
По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему :
x + y + x = 278° 2 x + y = 278° 2 x + y = 278°
⇒ ⇒
x + y + x + y =360° 2 x + 2 y = 360° x + y = 180°
Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒
х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98°
Тогда у = 180° - х = 180° - 98° = 82°
ответ : 98 ° ; 82° ; 98° ; 82°
1) 180° - (48° + 48°) = 84°
В данном треугольнике величины углов равны 48°, 48° и 84°, каждый из них острый, т.к. меньше 90°, значит, этот треугольник - остроугольный.
2) 180° - (25° + 65°) = 90°
В данном треугольнике величины углов равны 25°, 65° и 90°, один из них прямой, равный 90°, значит, этот треугольник - прямоугольный.
3)180° - 85° = 95°
В данном треугольнике величины двух углов равны 85°, а величина третьего - 95° больше 90°, значит, это угол тупой и следовательно этот треугольник - тупоугольный.
ответ: А - 2; Б - 1; В - 3