P.S. Сорри за такой схематичный рисунок, это я в полевых условиях, а у вас, благо, есть линейка и карандаш))
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота. 114=1/2(12+7) * AC AC= 144:9,5 AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12 Рассмотрим прямоугольный треугольник ВНС: По теореме Пифагора найдём отрезок ВD(гипотенузу) BD^2= 12^2+5^2=169 BD=13 (в нашей трапеции BD-больше боковое основание) ответ: 12; 13
Задача 3. В равнобедренном треугольнике (ACD, так как AD=CD) медиана (BD, так как делит сторону пополам (AB=BC)) проведённая к основанию (AC) является высотой и биссектрисой. Высота образует перпендикуляр, то есть прямой угол. Значит, ∠ABD=∠CBD=90°. Так как треугольник ADC равнобедренный ∠C=∠A=35° ответ: ∠А=35°, ∠ABD=90°. Задача 4. Вообще нерешаемая задача, не может быть такого, что в треугольнике сумма углов больше 180°, но скорее всего задача на то же правило, что следует из равенства углов А и В. Вероятно, АК=КВ=2см. Только так.
S трапеции = 1/2 (AB+CD)* AC , где AB и CD - это основания, а AC - это высота.
114=1/2(12+7) * AC
AC= 144:9,5
AC=12 (в нашей трапеции АС - это ещё и меньшее боковое основание, поэтому тоже идёт в ответ)
Рассмотрим ABCD (трапеция), проведём прямую ВН параллельную АС. Заметим, что прямая ВН = АС (высоте) = 12
Рассмотрим прямоугольный треугольник ВНС:
По теореме Пифагора найдём отрезок ВD(гипотенузу)
BD^2= 12^2+5^2=169
BD=13 (в нашей трапеции BD-больше боковое основание)
ответ: 12; 13
Задача 3.
В равнобедренном треугольнике (ACD, так как AD=CD) медиана (BD, так как делит сторону пополам (AB=BC)) проведённая к основанию (AC) является высотой и биссектрисой. Высота образует перпендикуляр, то есть прямой угол. Значит, ∠ABD=∠CBD=90°.
Так как треугольник ADC равнобедренный ∠C=∠A=35°
ответ: ∠А=35°, ∠ABD=90°.
Задача 4.
Вообще нерешаемая задача, не может быть такого, что в треугольнике сумма углов больше 180°, но скорее всего задача на то же правило, что следует из равенства углов А и В. Вероятно, АК=КВ=2см. Только так.