Нужно обязательно сделать чертёж! Рассмотрим треугольники ЕМР и ФМД. У них: сторона ЕМ равна стороне ФМ, а сторона РМ равна стороне ДМ (по условию задачи). Угол ЕМР равен углу ФМД как накрестлежащие при прямых ЕФ и ДР. По первому признаку равенства треугольников (две соответствующие стороны и угол между ними) получим, что треугольник ЕМР равен треугольнику ФМД. Если эти треугольники равны, то и соответствующие их углы тоже равны, т. е. угол РЕМ равен углу ДФМ, аналогично: угол ЕРМ равен углу ФДМ, а эти углы являются накрестлежащими при прямых ЕР и ФД, а согласно второму признаку параллельности прямых: ЕР параллельна ФД. Что и требовалось доказать.
Відповідь:V=15см³
Пояснення:
Объем такого параллелепипеда равен произведению его трех измерений.
Одно из этих измерений равно 5см. Пусть оставшиеся измерения равны X и Y. Тогда периметр параллелепипеда равен 4*X+4*Y+4*5 =36см. Или
X+Y=4 см. (1) Х=4-Y (2).
Площадь полной поверхности параллелепипеда:
S=2*(5*X)+2*(5*Y)+2*X*Y=46 см². Или
5*X+5*Y+X*Y=23 см². Или
5(X+Y)+X*Y=23 см². Подставим значение (1):
5*4+X*Y=23 => X*Y=3. Подставим значение из (2):
Y²-4Y+3=0. Решаем это квадратное уравнение:
Y1=1 см. => X1=3см
Y2=3см. => X2 =1см.
Тогда объем параллелепипеда равен 1*3*5=15см³.
ответ: V=15см³.
Рассмотрим треугольники ЕМР и ФМД. У них: сторона ЕМ равна стороне ФМ, а сторона РМ равна стороне ДМ (по условию задачи). Угол ЕМР равен углу ФМД как накрестлежащие при прямых ЕФ и ДР. По первому признаку равенства треугольников (две соответствующие стороны и угол между ними) получим, что треугольник ЕМР равен треугольнику ФМД. Если эти треугольники равны, то и соответствующие их углы тоже равны, т. е. угол РЕМ равен углу ДФМ, аналогично: угол ЕРМ равен углу ФДМ, а эти углы являются накрестлежащими при прямых ЕР и ФД, а согласно второму признаку параллельности прямых: ЕР параллельна ФД. Что и требовалось доказать.