Докажите теорему: если гипотенуза и катет одного прямоугольно треугольника соответственно конгруэнтны гипотенузе и катету другого прямоугольно треугольника то такие прямоугольные треугольники равны
Ровно так же (с точностью до замены a <-> b) доказывается СК = a*b/c; ч.т.д.
2. Тут муторнее :(((. Нужно выполнить следующие построения.
Провести ЕВ1 II АВ, EB1 = AB, треугольник ЕВ1С равнобедренный,
и в нем угол СЕВ1 = угол ВАС, это угол при вершине.
Теперь надо соединить В и В1 и в ПАРАРЛЛЕЛОГРАММЕ АЕВ1В провести "среднюю" линию ММ1 II AB; ясно, что она поделит ВВ1 пополам.
Вобщем-то, все эти построения сводятся к тому, чтобы доказать параллельность АС и КР, где Р - середина СВ1. Это уже видно, поскольку КР II ВВ1 как средняя линяя, а ВВ1 II АС (потому что АЕВ1В - параллелограмм).
Отсюда уже видно, что и МЕРК - параллелограмм, и угол СЕР = 20 градусов, а угол СЕВ1 = 40 градусов, и это - ответ :))) без чертежа очень сложно объяснять :(((
Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Я могу и оба решить, тем более, что задачки симпатичные. Вот только чертеж приложить не могу, а без чертежа второе задание очень трудно объяснить.
1.Пусть стороны АВ = с, AC = b, BC = a;
Рассмотрим треугольник AMP. Ясно, что он подобен исходному ABC, и АМ = с - а;
Значит, пропорция (в отношении сторон) равна (c - a)/c, и АР = b*(c - a)/c, откуда
РС = b - b*(c - a)/c = b*(1 - (c - a)/c)) = b*a/c;
Ровно так же (с точностью до замены a <-> b) доказывается СК = a*b/c; ч.т.д.
2. Тут муторнее :(((. Нужно выполнить следующие построения.
Провести ЕВ1 II АВ, EB1 = AB, треугольник ЕВ1С равнобедренный,
и в нем угол СЕВ1 = угол ВАС, это угол при вершине.
Теперь надо соединить В и В1 и в ПАРАРЛЛЕЛОГРАММЕ АЕВ1В провести "среднюю" линию ММ1 II AB; ясно, что она поделит ВВ1 пополам.
Вобщем-то, все эти построения сводятся к тому, чтобы доказать параллельность АС и КР, где Р - середина СВ1. Это уже видно, поскольку КР II ВВ1 как средняя линяя, а ВВ1 II АС (потому что АЕВ1В - параллелограмм).
Отсюда уже видно, что и МЕРК - параллелограмм, и угол СЕР = 20 градусов, а угол СЕВ1 = 40 градусов, и это - ответ :))) без чертежа очень сложно объяснять :(((
Простые задачи, не пойму пойму почему они вызвали у Вас затруднения.
1)
т.к. угол при меньшем основании равен 135, тогда при большем основании угол равен 45
У меня на рисунке меньшее основание сверху.
Опускаем высоту из меньшего основания на большее и получаем прямоугольный треугольник, т.к. угол равен 45 градусов, тогда и второй 45 градусов. Получается это равнобедренный прямоугольный треугольник.
Часть, которую отсекла высота у большего основания будет (5.4-4.2)/2=0.6. Это равнобедренный треугольник следовательно и высота будет 0.6
Sтрап=(а+б)/2 * h где а и б - основания
S= (4.2+5.4)/2 * 0.6
S=2.88
ответ: S=2.88
2)
решение этой задачи строится на теореме.
Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Следовательно h=20/2=10
S=20/2 * 10
S=100
ответ: S=100