Не вычисляя углов треугольника определите вид по величине углов ,если стороны треугодьников равны а)5,7,9; б)5,6,7; в)6,8,10
Объяснение:
а) "Если квадрат наибольшей стороны больше суммы квадратов двух других сторон с² > a²+b² , то треугольник тупоугольный."
5,7,9 ⇒ 9²>5²+7² , тк 9²=81 , 5²+7²=25+49=74 , 81>72.
б) "Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон с² < a²+b² , то треугольник остроугольный. "
5,6,7 ⇒ 7²<5²+6² , тк 7²=49 , 5²+6²=25+36=61 ,49<61.
в) "Если выполняется теорема Пифагора с²=a²+b² , где с - наибольшая сторона, а и b две других, то треугольник прямоугольный. "
6,8,10 ⇒ 10²=6²+8² , тк 10²=100 , 6²+8²=36+64=100 ,100=100.
ответ.
ΔАВС равнобедренный , АВ=ВС , АС - основание .
По условию известно, что одна из сторон = 2,7 см, а вторая сторона равна 6,5 см , тогда возможны два случая.
Либо АВ=ВС=2,7 см , АС=6,5 см , либо АВ=ВС=6,5 см , АС=2,7 см .
Проверяем неравенство треугольника. Оно утверждает, что любая сторона треугольника всегда меньше суммы двух других его сторон.
1) AB+BC=2,7+2,7=5,4 (cм) ; 5,4<6,5 , AB+BC<AC
2) AB+BC=6,5+6,5=13 (cм) ; 13>2,7 , AB+BC>АC
Неравенство треугольника выполняется для второго случая.
ответ: боковые стороны АВ=ВС=6,5 см , а основание АС=2,7 см .
Не вычисляя углов треугольника определите вид по величине углов ,если стороны треугодьников равны а)5,7,9; б)5,6,7; в)6,8,10
Объяснение:
а) "Если квадрат наибольшей стороны больше суммы квадратов двух других сторон с² > a²+b² , то треугольник тупоугольный."
5,7,9 ⇒ 9²>5²+7² , тк 9²=81 , 5²+7²=25+49=74 , 81>72.
б) "Если квадрат наибольшей стороны меньше суммы квадратов двух других сторон с² < a²+b² , то треугольник остроугольный. "
5,6,7 ⇒ 7²<5²+6² , тк 7²=49 , 5²+6²=25+36=61 ,49<61.
в) "Если выполняется теорема Пифагора с²=a²+b² , где с - наибольшая сторона, а и b две других, то треугольник прямоугольный. "
6,8,10 ⇒ 10²=6²+8² , тк 10²=100 , 6²+8²=36+64=100 ,100=100.
ответ.
ΔАВС равнобедренный , АВ=ВС , АС - основание .
По условию известно, что одна из сторон = 2,7 см, а вторая сторона равна 6,5 см , тогда возможны два случая.
Либо АВ=ВС=2,7 см , АС=6,5 см , либо АВ=ВС=6,5 см , АС=2,7 см .
Проверяем неравенство треугольника. Оно утверждает, что любая сторона треугольника всегда меньше суммы двух других его сторон.
1) AB+BC=2,7+2,7=5,4 (cм) ; 5,4<6,5 , AB+BC<AC
2) AB+BC=6,5+6,5=13 (cм) ; 13>2,7 , AB+BC>АC
Неравенство треугольника выполняется для второго случая.
ответ: боковые стороны АВ=ВС=6,5 см , а основание АС=2,7 см .