В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
лунный3
лунный3
17.06.2021 07:59 •  Геометрия

Домашнє завдання

У Delta*A * B * C , BC=CA,CK- висота, M in СК. Доведіть, що MB = MA .

Показать ответ
Ответ:
Черныйангел01
Черныйангел01
03.08.2022 06:21

Объяснение:

площадь трапеции

площадь трапеции равна произведению полусуммы ее оснований на высоту:

s = ((ad + bc) / 2) · bh,

где  высота трапеции  — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.

доказательство.

рассмотрим трапецию  abcd  с основаниями  ad  и  bc, высотой  bh  и площадью  s.

докажем, что  s = ((ad + bc) / 2) · bh.

диагональ  bd  разделяет трапецию на два треугольника  abd  и  bcd, поэтому  s = sabd  + sbcd. примем отрезки  ad  и  bh  за основание и высоту треугольника  abd, а отрезки  bcи  dh1  за основание и высоту треугольника  bcd. тогда

sabc  = ad · bh / 2, sbcd  = bc · dh1.

так как  dh1  = bh, то  sbcd  = bc · bh / 2.

таким образом,

s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.это можно только с доказательством

0,0(0 оценок)
Ответ:
Zavgorodnev04
Zavgorodnev04
30.03.2022 16:43

66° и 42°

Объяснение:

Дано: Окр.О;

АВСD - вписанный четырехугольник;

АС ∩ BD = M; AB ∩ BC = N;

∠АMD = 108°; ∠AND = 24°.

Найти: ∠АBD и ∠BDC.

1.

Угол между пересекающимися хордами окружности равен полусумме двух противоположных дуг, высекаемых этими хордами.

\displaystyle \angle{AMD}= \frac{1}{2} (\smile {BC}+\smile{AD})\\\\108^0=\frac{1}{2} (\smile {BC}+\smile{AD})\\\\\smile {BC}+\smile{AD}=216^0(1)

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

\displaystyle \angle{AND}=\frac{1}{2}(\smile {AD}-\smile {BC})\\\\24^0= \frac{1}{2}(\smile {AD}-\smile {BC})\\\\48^0=\smile {AD}-\smile {BC}(2)

Из (2) выразим дугу  AD и подставим в (1):

\displaystyle \smile {AD}=48^0+\smile {BC}\\\\216^0=48^0+\smile {BC}+\smile {BC}\\\\2\smile {BC}=216^0-48^0\\\\\smile {BC}=84^0\\\\\smile {AD}=48^0+84^0=132^0

2. Теперь можем найти искомые углы.

Вписанный угол равен половине градусной меры дуги, на которую он опирается.

\displaystyle \angle {ABD}=\frac{1}{2}\smile {AD}=\frac{1}{2}*132=66^0\\\\\angle {BDC}=\frac{1}{2}\smile {BC}=\frac{1}{2}*84^0=42^0


Діагоналі чотирикутника АВCD, вписаного в коло, перетинаються у точці М, а прямі АВ i CD перетинають
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота