Домашнее задание: решить либше 2 задачи 1. В параллелограмме ABCD точкам
середина сторија AB. И естно,
что MC MD. Докажите, что данный параллелограми — прямуутолиамик.
2. Сторона ромба раина 56, а сутрый угол ранен 60°. Васила риба
опущенная из вершины тупого угла, делит сторону на диа утрежа
Каковы длины этих отрезков?
B.
K
M
3. В трапеции ABCD бокоре стороны AB и CD раины, СН -
Высота, проведённая к болып ему основании AD. Найдите длину
отрезка HD, если средняя линия KM трапеции раина 16, а меньше
основание ВС равно 6.
HD
центр вписанной окружности (он же - основание высоты пирамиды) и точка пересечения диагоналей основания. Нужно теперь доказать, что эти точки не совпадают. По условию, основанием является равнобокая трапеция. Высота этой трапеции - это диаметр вписанной окружности, отсюда можно заключить, что центр вписанной окружности, находится на одинаковом расстоянии от оснований трапеции. Для точки пересечения диагоналей этого сказать нельзя. Пусть ABCD - это данная равнобокая трапеция, являющаяся основанием данной в условии пирамиды. Причем AD - большее основание, BC - меньшее основание трапеции. Пусть т. F - точка пересечения диагоналей. Проведя диагонали трапеции AC и BD. Найдем, что треугольники AFD и CFB подобны по двум углам (накрест лежащие углы при параллельных прямых AD и BC и секущих BD и AC равны). Но коэффициент подобия этих треугольников не равен 1 (k = AD/BC, но AD>BC, поэтому AD/BC>1), то есть эти треугольники не равны, а значит неравны и их высоты, проведенные из т. F, что означает, что т. F не равноудалена от оснований трапеции, в отличии о центра вписанной в трапецию окружности. ЧТД.
Поэтому отрезок равный 6 можно отметить и на катете. На другом катете есть отрезок, равный 4. А так же на каждом катете есть отрезки, равные r- радусу, вписанной окружности.
Теперь теорема Пифагора
(6+r)² + (4+r)²=(6+4)²
Найдем r
36+12r+r²+16+8r+r²=100
2r²+20r-48=0
r²+10r-24=0
корни -12 и 2. Подходит только 2
ответ катет 6+2=8 и второй катет 4+2=6 Площадь равна половине произведения катетов 24 см кв