Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).
Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения.
В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16.
S=9*45√3/16=405√3/16
Центр окружности, проходящей через точки А и В, равноудален от этих точек. А все точки, равноудаленные от концов отрезка АВ, лежат на серединном перпендикуляре к нему. Т.е. центр окружности, проходящей через точки А и В, лежит на серединном перпендикуляре к отрезку АВ.
Наименьшее расстояние от точек А и В до прямой а - длина перпендикуляра, проведенного к а, т.е. R = HA = HB = 1 см. Если же центр окружности не совпадает с точкой Н, то радиус будет больше, чем НА (гипотенуза ОА в прямоугольном треугольнике АОН больше катета НА).