Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)
дано: ab=ad,
∠bac=∠dac
доказать: ∆abc=∆adc
доказательство:
1) ab=ad (по условию)
2) ∠bac=∠dac (по условию)
3) ac — общая сторона.
следовательно, ∆abc=∆adc (по двум сторонам и углу между ними)
дано:
ao=bo,
co=do
доказать: ∆aoc=∆bod.
доказательство:
определяем те элементы, о равенстве которых известно по условию :
1) ao=bo (по условию)
2) co=do (по условию).
3) ∠aoc = ∠bod (как вертикальные).
дано:
ab=ac,
af=ak
доказать: ∆abk=∆acf
доказательство:
1) ab=ac (по условию)
2) af=ak (по условию)
3) ∠a — общий.
следовательно, ∆abk=∆acf (по двум сторонам и углу между ними).
вычислите периметр равнобедренного треугольника авс, если периметр треугольника adc равен 18 cм, и cd = 6 cм и ad = bd (fig.5)
доказательство:
периметр треугольника adc = ac + cd + ad = 18 ⇔ ac + 6 + ad = 18 ⇔ ac + ad = 12
потому что ac = bc (треугольники являются равнобедренными) и ad = db, следовательно ac + ad = db +bc = 12
периметр треугольника abc = ab + ac + bc = ad + db + ac + bc = 12 + 12 = 24 cм.
Объяснение: №1. 1) Так как АМ=2МС, то пусть АМ=2х, МС=х, тогда АС= АМ+МС=х+2х=3х 2) Пусть МК- данный серединный перпендикуляр, К∈АВ, АК=КВ= с/2=0,5с, где гипотенуза АВ=с; М∈АС, МК⊥АВ 3)ΔАВС подобенΔАМК : по двум углам: ∠А-общий, ∠С=∠К=90°, значит их стороны пропорциональны АС/АК= АВ/АМ ⇒3х/0,5с = с/2х, ⇒0,5с²=6х², ⇒х= с/√12 3) Из ΔАВС ⇒ Sin B=AC/AB= 3x/c=3с/(с√12)= 3√12/12= √3/2, ⇒∠В=60°, тогда∠А=90°-60°=30° №2. Раз ΔАВС-прямоугольный, тогипотенуза больше катета, ⇒АС-гипотенуза, ∠В=90°. ТО расстояние: а) от A до BC равно 24, б) от C до AB равно 7, в) может ли расстояние от B до AC быть равным 10см?- Нет, т.к. в прямоугольном ΔВМС гипотенуза ВМ должна быть больше катета ВМ ( ВМ⊥АС)