1. пусть апофема l и угол между апофемой и плоскостью основания в 30° тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности, r = l*cos(30°) = l√3/2 Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30) r/(a/2) = tg(30°) = 1/√3 2r√3=a 2*l√3/2*√3=a 3l = a l = 1/3a Апофема равна одной трети основания Площадь боковой поверхности S = 3*1/2*l*a = 1/2 a^2 = 50 см^2 1/2 a^2 = 50 a^2 = 100 a = 10 см 2 длина малой диагонали основания по теореме косинусов l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5 l = √5 Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда l*h = √15 h = √3 Объём параллелепипеда V=1*2√2*sin(45)*h = 2√3
(х-8)(-16+6)-(y-9)(-12+6)+(z-6)(36-48)=0. Или -10x+6y-12z+46=0. 5x-3y+6z-23=0 - общее уравнение плоскости АВС с коэффициентами А=5, В=-3, С=6, D=-23.
Подставим данные трех наших точек плоскости АВD: |x-8 2-8 7-8| |x-8 -6 -1| |y-9 1-9 6-9| = 0. Или |y-9 -8 -3| = 0. |z-6 7-6 1-6| |z-6 1 -5| Раскрываем определитель по первому столбцу, находим уравнение плоскости ABD : |-8 -3| |-6 -1| |-6 -1| (х-8)*| 1 -5| - (y-9)*| 1 -5| +(z-6)*|-8 -3| =0.
(х-8)(40+3)-(y-9)(30+1)+(z-6)(18-8)=0. 43x-31y+10z-125=0 - общее уравнение плоскости АВD с коэффициентами А=43, В=-31, С=10, D=-125. Угол между плоскостями определяем по формуле: Cosα=|A1*A2+B1B2+C1C2|/(√(A1²+B1²+C1²)*√(A2²+B2²+C2²) или Cosα=|215+93+60|/(√(25+9+36)*√(43²+31²+10²)= 368/451=0,816. Угол равен ≈35,3°.
2. Уравнение прямой АВ по двум точкам: (x-1)/(4-1)=(y-6)/(5-6) или -x+1=3y-18 или y= (-1/3)*x+19/3 y= (-1/3)*x+19/3 (уравнение прямой с угловым коэффициентом). Угловой коэффициент k1=-1/3 (условие перпендикулярности прямых: k2=-(1/k1). Точка С(2;-2). Уравнение прямой, перпендикулярной прямой АВ, проходящей через точку С : Y-Yc=3*(X-Xc). Подставляем наши значения: Y+2=3*(X-2) или 3Х-Y-8=0. - уравнение прямой Р. Координаты точки пересечения прямых АВ и Р найдем, решив систему уравнений этих прямых: АВ: х+3y=19 и P: 3x-y=8. Отсюда х=4,3 y=4,9 ответ: К(4,3;4,9).
тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности,
r = l*cos(30°) = l√3/2
Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30)
r/(a/2) = tg(30°) = 1/√3
2r√3=a
2*l√3/2*√3=a
3l = a
l = 1/3a
Апофема равна одной трети основания
Площадь боковой поверхности
S = 3*1/2*l*a = 1/2 a^2 = 50 см^2
1/2 a^2 = 50
a^2 = 100
a = 10 см
2
длина малой диагонали основания по теореме косинусов
l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5
l = √5
Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда
l*h = √15
h = √3
Объём параллелепипеда
V=1*2√2*sin(45)*h = 2√3
Для составления уравнения плоскости используем формулу:
|x - xA xB - xA xC - xA|
|y - yA yB - yA yC - yA| = 0.
|z - zA zB - zA zC - zA|
Подставим данные трех наших точек плоскости АВС:
|x-8 2-8 2-8| |x-8 -6 -6|
|y-9 1-9 3-9| = 0. Или |y-9 -8 -6| = 0.
|z-6 7-6 8-6| |z-6 1 2|
Раскрываем определитель по первому столбцу, находим уравнение плоскости:
|-8 -6| |-6 -6| |-6 -6|
(х-8)*| 1 2| - (y-9)* | 1 2| +(z-6)*|-8 -6| =0. Отсюда
(х-8)(-16+6)-(y-9)(-12+6)+(z-6)(36-48)=0. Или
-10x+6y-12z+46=0.
5x-3y+6z-23=0 - общее уравнение плоскости АВС с коэффициентами
А=5, В=-3, С=6, D=-23.
Подставим данные трех наших точек плоскости АВD:
|x-8 2-8 7-8| |x-8 -6 -1|
|y-9 1-9 6-9| = 0. Или |y-9 -8 -3| = 0.
|z-6 7-6 1-6| |z-6 1 -5|
Раскрываем определитель по первому столбцу, находим уравнение плоскости ABD :
|-8 -3| |-6 -1| |-6 -1|
(х-8)*| 1 -5| - (y-9)*| 1 -5| +(z-6)*|-8 -3| =0.
(х-8)(40+3)-(y-9)(30+1)+(z-6)(18-8)=0.
43x-31y+10z-125=0 - общее уравнение плоскости АВD с коэффициентами
А=43, В=-31, С=10, D=-125.
Угол между плоскостями определяем по формуле:
Cosα=|A1*A2+B1B2+C1C2|/(√(A1²+B1²+C1²)*√(A2²+B2²+C2²) или
Cosα=|215+93+60|/(√(25+9+36)*√(43²+31²+10²)= 368/451=0,816.
Угол равен ≈35,3°.
2. Уравнение прямой АВ по двум точкам:
(x-1)/(4-1)=(y-6)/(5-6) или
-x+1=3y-18 или y= (-1/3)*x+19/3
y= (-1/3)*x+19/3 (уравнение прямой с угловым коэффициентом).
Угловой коэффициент k1=-1/3 (условие перпендикулярности прямых: k2=-(1/k1).
Точка С(2;-2).
Уравнение прямой, перпендикулярной прямой АВ, проходящей через точку С : Y-Yc=3*(X-Xc). Подставляем наши значения:
Y+2=3*(X-2) или 3Х-Y-8=0. - уравнение прямой Р.
Координаты точки пересечения прямых АВ и Р найдем, решив систему уравнений этих прямых:
АВ: х+3y=19 и
P: 3x-y=8. Отсюда
х=4,3
y=4,9
ответ: К(4,3;4,9).