По сути надо найти двугранный угол между треугольниками А1BC и АВС. Этот угол есть угол между высотами этих треугольников (которые также являются их медианами) . Обознач высоты как АМ и А1М. АМ можно найти по теореме Пифагора: СМ = 1 (половина ВС) => АМ = корень из (4 - 1) = корень из 3. Найдем высоту призмы, ака сторону АА1. Также по теореме Пифагора она равна корень из (5 - 4) = 1. угол А1АМ = 90 градусов, значит отношение стороны АА1 к АМ = tg(нужного угла) = tg(1/корень из 3) = 30 градусов.
Если отрезки пересекающихся медиан равны, то и медианы равны.
Если медианы треугольника равны, значит, треугольник равносторонний.
Применив теорему о том, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, найдем длину медиан:
ОА₁=√8, тогда АО=2√8, а АА₁=3√8.
АА₁=ВВ₁=СС₁=3√8=6√2.
В равностороннем треугольнике медиана является биссектрисой и высотой.
Найдем сторону АС через медиану ВВ₁ по формуле
ВВ₁=(АС√3)\2
6√2=(АС√3)\2
АС√3=12√2
АС=(12√2)\√3=4√6
Найдем площадь АВС
S=1\2 * AC * ВВ₁ = 1\2 * 4√6 * 6√2 = 2√6 * 6√2 = 12√12=24√3 (ед²)
Подробнее - на -
Объяснение:
По сути надо найти двугранный угол между треугольниками А1BC и АВС. Этот угол есть угол между высотами этих треугольников (которые также являются их медианами) . Обознач высоты как АМ и А1М. АМ можно найти по теореме Пифагора: СМ = 1 (половина ВС) => АМ = корень из (4 - 1) = корень из 3. Найдем высоту призмы, ака сторону АА1. Также по теореме Пифагора она равна корень из (5 - 4) = 1. угол А1АМ = 90 градусов, значит отношение стороны АА1 к АМ = tg(нужного угла) = tg(1/корень из 3) = 30 градусов.