Посмотрите предложенный вариант: В 4-угольнике стороны образуют прямые углы. 1. Тогда необходимо доказать, что |KL|⊥|LM|; |LM|⊥|MN|; |MN|⊥|KN|. Для этого можно либо вычислить косинус угла между векторами, либо составить уравнения прямых, проходящих через эти пары точек. Решение вторым 2. Для нахождения уравнения прямой необходимо составить два линейных уравнения и решить их как систему. Решение показано во вложении. 3. Из полученных уравнений для прямых видно, что а) KL || MN, LM || KN; (коэффициенты при Х равны) b) KL⊥LM (⊥KN); LM⊥MN (⊥KL) (произведение коэффициентов при Х даёт (-1).
В 4-угольнике стороны образуют прямые углы.
1. Тогда необходимо доказать, что |KL|⊥|LM|; |LM|⊥|MN|; |MN|⊥|KN|.
Для этого можно либо вычислить косинус угла между векторами, либо составить уравнения прямых, проходящих через эти пары точек. Решение вторым
2. Для нахождения уравнения прямой необходимо составить два линейных уравнения и решить их как систему. Решение показано во вложении.
3. Из полученных уравнений для прямых видно, что
а) KL || MN, LM || KN; (коэффициенты при Х равны)
b) KL⊥LM (⊥KN); LM⊥MN (⊥KL) (произведение коэффициентов при Х даёт (-1).