В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
esnira1098376
esnira1098376
10.02.2020 12:59 •  Геометрия

Доведіть, що довільна площина, яка проходить через середи двох мимобіжних ребе тетраедра, ділить його об'єм навпіл докажите, что произвольное плоскость, проходящая через середины двух скрещивающихся ребе тетраэдра, делит его объем пополам

Показать ответ
Ответ:
AA7777AA
AA7777AA
08.07.2020 11:14
Пусть М и К - середины ребер АВ и СD тетраэдра ABCD.
Пусть плоскость, проходящая через М и К, пересекает ребра АD и ВС в точках  L и N.
 Плоскость DMC делит тетраэдр на 2 части равного объема, поэтому достаточно проверить, что равны объемы тетраэдров  DKLM и CKNM.
Объем тетраэдра СКВМ равен 1/4 объема тетраэдра ABCD, а отношение объемов тетраэдров СКВМ и CKNM равно ВС:СN. Аналогично отношение 1/4 объема тетраэдра ABCD к объему тетраэдра DKLM равно AD:DL.
ВС:СN=AD:DL

Доведіть, що довільна площина, яка проходить через середи двох мимобіжних ребе тетраедра, ділить йог
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота