2. Если треугольники равны, то равны и их углы и стороны.
∠F₁ = ∠F = 17°
D₁E₁ = DE
3. Рассмотрим △MON = △PON
∠PNO = ∠ MNO , т.к. NO - биссектриса угла N
NO - общая сторона
∠MON = ∠PON по условию
Теорема: Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны, следовательно,
△MON = △PON
4. △DEC = △DKC, по трем сторонам (DE = DK, CE = CK, DC - общая сторона), а значит, ∠ECD = ∠KCD, следовательно, СD - биссектриса ∠ЕСK (ибо биссектриса — это луч, выходящий из угла и делящий его пополам)
2) Согласно условию задачи, объём параллелепипеда также равен 216, но он рассчитывается как произведение длины 6 на ширину 4 и на высоту х. Подставляем эти значения в формулу объёма и находим х.
V п = a · b · c
6 · 4 · х = 216
х = 216 : 24 = 9
ответ: 9
№ 20
1) Площадь квадрата S равна квадрату его стороны a:
S = a²
Так как S = 36, то а = √36 = 6.
2) Периметр квадрата P равен 4a:
Р = 4 · 6 = 24.
3) Так как площадь боковой поверхности прямоугольного параллелепипеда S бок равна произведению периметра основания Р на высоту H, то, зная S бок и Р, находим Н:
S бок = Р · Н
120 = 24 · Н
Н = 120 : 24 = 5
4) Объём V прямоугольного параллелепипеда равен произведению площади его основания на высоту:
V = S осн · Н = 36 · 5 = 180
ответ: 180
№ 22
1) Сначала находим объём куба, как если бы в нём не было отверстий:
V к = a³ = 4³ = 64
2) Теперь от этого объёма отнимем объёмы сквозных отверстий V₁ и V₂.
Пусть V₁ - это объём горизонтального отверстия, размеры которого: длина - 2, ширина - 2, высота 4:
V₁ = 2 · 2 · 4 = 16
V₂ - объём вертикального отверстия, размеры которого: длина - 2, ширина 2, а высота не 4, как у горизонтального отверстия, а на 2 меньше, т.к. эти 2 мы уже учли, когда считали объём горизонтального отверстия:
Объяснение:
1. Периметр - это сумма длин всех сторон.
Р△ = Ас + Ав + ВС = 4,7 + 5,4 +6,3 = 16,4 (см)
2. Если треугольники равны, то равны и их углы и стороны.
∠F₁ = ∠F = 17°
D₁E₁ = DE
3. Рассмотрим △MON = △PON
∠PNO = ∠ MNO , т.к. NO - биссектриса угла N
NO - общая сторона
∠MON = ∠PON по условию
Теорема: Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны, следовательно,
△MON = △PON
4. △DEC = △DKC, по трем сторонам (DE = DK, CE = CK, DC - общая сторона), а значит, ∠ECD = ∠KCD, следовательно, СD - биссектриса ∠ЕСK (ибо биссектриса — это луч, выходящий из угла и делящий его пополам)
№ 18 - ответ: 9
№ 20 - ответ: 180
№ 22 - ответ: 40
Объяснение:
№ 18.
1) Объём куба:
V к = a³ = 6³ = 216
2) Согласно условию задачи, объём параллелепипеда также равен 216, но он рассчитывается как произведение длины 6 на ширину 4 и на высоту х. Подставляем эти значения в формулу объёма и находим х.
V п = a · b · c
6 · 4 · х = 216
х = 216 : 24 = 9
ответ: 9
№ 20
1) Площадь квадрата S равна квадрату его стороны a:
S = a²
Так как S = 36, то а = √36 = 6.
2) Периметр квадрата P равен 4a:
Р = 4 · 6 = 24.
3) Так как площадь боковой поверхности прямоугольного параллелепипеда S бок равна произведению периметра основания Р на высоту H, то, зная S бок и Р, находим Н:
S бок = Р · Н
120 = 24 · Н
Н = 120 : 24 = 5
4) Объём V прямоугольного параллелепипеда равен произведению площади его основания на высоту:
V = S осн · Н = 36 · 5 = 180
ответ: 180
№ 22
1) Сначала находим объём куба, как если бы в нём не было отверстий:
V к = a³ = 4³ = 64
2) Теперь от этого объёма отнимем объёмы сквозных отверстий V₁ и V₂.
Пусть V₁ - это объём горизонтального отверстия, размеры которого: длина - 2, ширина - 2, высота 4:
V₁ = 2 · 2 · 4 = 16
V₂ - объём вертикального отверстия, размеры которого: длина - 2, ширина 2, а высота не 4, как у горизонтального отверстия, а на 2 меньше, т.к. эти 2 мы уже учли, когда считали объём горизонтального отверстия:
V₂= 2 · 2 · 2 = 8
3) Объём полученной фигуры:
V = V к - V₁ - V₂ = 64 - 16 - 8 = 64 - 24 = 40
ответ: 40