Чтобы доказать утверждение, достаточно доказать, что линия центров делит внутреннюю касательную пополам (тогда она и вторую делит пополам :)). Если соединить центры окружностей и провести радиусы в точки касания внутренней касательной, то мы получим 2 прямоугольных треугольника с равными углами и катетами-радиусами, которые равны по условию. Этого достаточно,чтобы утверждать равенство треугольников. Откуда и следует, что линия центров делит внутреннюю касательную пополам. Значит, она и вторую делит пополам, значит - внутренние касательные пересекаются в своих серединах.
Первое следует из того, что половина длины хорды и РАССТОЯНИЕ ДО хорды связаны теоремой Пифагора с радиусом окружности (ну, возьмите любую хорду, опустите на неё перпендикуляр из центра, и рассмотрите прямоугольный треугольник, у которого катеты - половина хорды и перпендикуляр к хорде, а гипотенуза - радиус). Поэтому хорды, РАВНОУДАЛЕННЫЕ от центра, имеют равные длины. А касательные к внутренней окружности как раз удалены от центра на равное расстояние - на радиус малой окружности.
Чтобы доказать второе утверждение, достаточно доказать, что линия центров делит внутреннюю касательную пополам (тогда она и вторую делит пополам :)). Если соединить центры окружностей и провести радиусы в точки касания внутренней касательной, то мы получим 2 прямоугольных треугольника с равными углами и катетами-радиусами, которые равны по условию. Этого достаточно,чтобы утверждать равенство треугольников. Откуда и следует, что линия центров делит внутреннюю касательную пополам. Значит, она и вторую делит пополам, значит - внутренние касательные пересекаются в своих серединах.
Первое следует из того, что половина длины хорды и РАССТОЯНИЕ ДО хорды связаны теоремой Пифагора с радиусом окружности (ну, возьмите любую хорду, опустите на неё перпендикуляр из центра, и рассмотрите прямоугольный треугольник, у которого катеты - половина хорды и перпендикуляр к хорде, а гипотенуза - радиус). Поэтому хорды, РАВНОУДАЛЕННЫЕ от центра, имеют равные длины. А касательные к внутренней окружности как раз удалены от центра на равное расстояние - на радиус малой окружности.
Чтобы доказать второе утверждение, достаточно доказать, что линия центров делит внутреннюю касательную пополам (тогда она и вторую делит пополам :)). Если соединить центры окружностей и провести радиусы в точки касания внутренней касательной, то мы получим 2 прямоугольных треугольника с равными углами и катетами-радиусами, которые равны по условию. Этого достаточно,чтобы утверждать равенство треугольников. Откуда и следует, что линия центров делит внутреннюю касательную пополам. Значит, она и вторую делит пополам, значит - внутренние касательные пересекаются в своих серединах.