Сложная формулировка, а решается как раз просто :) Четырехугольник KPQL одновременно и вписан в окружность, то есть сумма противоположных углов равна 180°, и описан вокруг окружности, что означает, что суммы противоположных сторон равны. Поэтому угол PKL + угол PQL = 180°; то есть угол PKL = угол PQM; Таким образом, треугольники KML и QMP подобны. Если теперь обозначить KL = c; KM = a; ML = b; то MQ = a*x; MP = b*x; PQ = c*x; где x - коэффициент подобия. KP + QL = KL + PQ; a - b*x + b - a*x = c + c*x; (a + b)*(1 - x) = c*(1 + x); и все дела :) x = (a + b - c)/(a + b +c); PQ = c*x; Если теперь подставить числа, получится x = 1/4; PQ = 9/2;
Есть пирамида АВСО, где О - вершина, АВС - основание. Из вершины С проведем высоту СС1 к стороне АВ. СС1^2=AC^2-AC1^2=10^2-5^2=75, СС1=v75=5v3 S(основания)=1/2*АВ*СС1=1/2*10*(5v3)^2 = 25v3 Из вершины А проведем высоту АА1 к стороне ВС. Точку пересечения высот АА1 и СС1 назовем Д. Т.к. медианы пересекаются в точке, которая делит их в отношении 2:1 считая от вершины, то СД=СС1*2/3=10/v3 Из треугольника ОСД: примем ОД за х. Тогда ОС=2ОД=2х, тогда CД^2=ОС^2-OД^2= 3х^2=(10/v3)^2=100/3 Отсюда х=10/3=ОД V=1/3* S(основания)*h=1/3*25v3*10/3=125/(3*v3)
Четырехугольник KPQL одновременно и вписан в окружность, то есть сумма противоположных углов равна 180°, и описан вокруг окружности, что означает, что суммы противоположных сторон равны.
Поэтому угол PKL + угол PQL = 180°; то есть угол PKL = угол PQM;
Таким образом, треугольники KML и QMP подобны.
Если теперь обозначить KL = c; KM = a; ML = b; то MQ = a*x; MP = b*x; PQ = c*x;
где x - коэффициент подобия.
KP + QL = KL + PQ;
a - b*x + b - a*x = c + c*x;
(a + b)*(1 - x) = c*(1 + x); и все дела :)
x = (a + b - c)/(a + b +c);
PQ = c*x;
Если теперь подставить числа, получится x = 1/4; PQ = 9/2;