V - объём основной пирамиды, v - объём отсечённой пирамиды. Нарисуй треугольник АВЕ с основанием АВ. ЕО - высота пирамиды, ЕО1 - высота отсечённой пирамиды. ЕО1/ЕО=1/3. Через точку О1 параллельно основанию построим отрезок А1В1. Треугольники ЕАВ и ЕА1В1 подобны т.к. в них углы равны. А1В1/АВ=1/3 АВ - один из линейных размеров в основании пирамиды V. А1В1 - соответствующий элемент пирамиды v. Объём вычисляется из трёх линейных размеров: длина, ширина, высота. Если отношение линейных размеров двух пирамид равно 1:3, то отношение их объёмов имеет вид v:V=1:3³=1/27, отсюда v=V/27=81/27=3
Сдесь можно рассмотреть только треугольник ABO угол АОБ равен 90 градусам так как треугольник прямоугольный сумма внутренних углов треугольника равна 180 градусам нам нужно найти половину угла Б 180-(70+90)=20 - это половина угла Б значит целый угол Б будет равен 40 градусам А так как противоположные углы у ромба равны угол Б равен 40 градусов значит угол Д тоже равен 40 градусов угол А равен 140 градусам значит угол С равен тоже 140 градусам можно проверить: так как в четырехугольниках сумма внутренних углов равна 360 градусов, а ромб является четырехугольником 140+140+40+40=360 Вот и все)
Нарисуй треугольник АВЕ с основанием АВ. ЕО - высота пирамиды, ЕО1 - высота отсечённой пирамиды. ЕО1/ЕО=1/3.
Через точку О1 параллельно основанию построим отрезок А1В1. Треугольники ЕАВ и ЕА1В1 подобны т.к. в них углы равны. А1В1/АВ=1/3
АВ - один из линейных размеров в основании пирамиды V.
А1В1 - соответствующий элемент пирамиды v.
Объём вычисляется из трёх линейных размеров: длина, ширина, высота. Если отношение линейных размеров двух пирамид равно 1:3, то отношение их объёмов имеет вид v:V=1:3³=1/27, отсюда
v=V/27=81/27=3
угол АОБ равен 90 градусам так как треугольник прямоугольный
сумма внутренних углов треугольника равна 180 градусам
нам нужно найти половину угла Б
180-(70+90)=20 - это половина угла Б
значит целый угол Б будет равен 40 градусам
А так как противоположные углы у ромба равны
угол Б равен 40 градусов значит угол Д тоже равен 40 градусов
угол А равен 140 градусам значит угол С равен тоже 140 градусам
можно проверить:
так как в четырехугольниках сумма внутренних углов равна 360 градусов, а ромб является четырехугольником
140+140+40+40=360
Вот и все)