1.Обозначим ромб АВСD, а точка пересечения диагоналей - О, угол ОВС=50. У ромба все стороны равны, диагонали являются биссектрисами и противоположные углы равны, значит, если угол ОВС = 50, то угол АВС = 50+50=100., и противоположный ему угол АDС = 100. Рассмотрим треугольник ВОС: угол ОВС=50, ВОС = 90-->ВСО=180-90-50=40, следовательно, угол ВСD=40+40=80 и противоположный ему угол ВАD=80. 2.АВСD - прямоугольник, О - точка пересечения диагоналей АС и ВD, угол ОСD = 40. В прямоугольнике диагонали равны и точкой пересечения делятся пополам. Рассмотрим треугольник СОD: ОС=ОD --> этот треугольник равнобедренный, значит у него углы при основании равны и угол ОСD=ОDС. Сумма углов треугольника равна 180 градусам, 180-40-40=100 - угол СОD- острый угол при пересечении диагоналей.
Диагонали квадрата равны, взаимно перпендикулярны и точкой пересечения делятся пополам. Значит перпендикуляр, опущенный из вершины на диагональ квадрата - это половина его второй диагонали.
Построение:
1. Проведем прямую а и отметим на ней точку О. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения окружности с прямой а обозначим А и С.
2. Построим перпендикуляр к прямой а, проходящий через точку О. Для этого проведем две окружности с центрами в точках А и С одинакового произвольного радиуса (больше половины отрезка АС). Через точки пересечения окружностей проведем прямую k. k⊥AC.
3. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения этой окружности с прямой k обозначим В и D.
2.АВСD - прямоугольник, О - точка пересечения диагоналей АС и ВD, угол ОСD = 40. В прямоугольнике диагонали равны и точкой пересечения делятся пополам. Рассмотрим треугольник СОD: ОС=ОD --> этот треугольник равнобедренный, значит у него углы при основании равны и угол ОСD=ОDС. Сумма углов треугольника равна 180 градусам, 180-40-40=100 - угол СОD- острый угол при пересечении диагоналей.
Диагонали квадрата равны, взаимно перпендикулярны и точкой пересечения делятся пополам. Значит перпендикуляр, опущенный из вершины на диагональ квадрата - это половина его второй диагонали.
Построение:
1. Проведем прямую а и отметим на ней точку О. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения окружности с прямой а обозначим А и С.
2. Построим перпендикуляр к прямой а, проходящий через точку О. Для этого проведем две окружности с центрами в точках А и С одинакового произвольного радиуса (больше половины отрезка АС). Через точки пересечения окружностей проведем прямую k. k⊥AC.
3. Построим окружность с центром в точке О и радиусом, равным данному отрезку b. Точки пересечения этой окружности с прямой k обозначим В и D.
Квадрат ABCD построен.