Дано: шар с центром в точке R=13- радиус шара плоскость а -сечение шара р(а, О)=5 (расстояние от центра шара О до плоскости а Найти: r-радиус круга в сечении Решение Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед
ΔАСВ - осевое сечение конуса.ОС - высота конуса, АС=ВС -образующие конуса. ОА=ОВ - это радиусы основания. ΔАСВ - равнобедренный ОС в равнобедренном треугольнике одновременно является высотой, медианой и биссектрисой. Значит ∠АСО=∠ВСО=60° так как ∠АСВ по условию равен 120°. ΔВСО. ∠ОВС=30°. ВС=2СО=2·6=12 см. Образующая конуса равна 12 см. ОВ²=ВС²-ОС²=144-36=108; ОВ=√108=6√3 см. Радиус основания R=6√3 см. Площадь основания S=πR²=108π см² а) Боковая поверхность конуса S1=πRL=12·6√3 π см². б) Площадь полной поверхности конуса 108π+72√3 π=(408+72√3)π см² в) ΔКСМ - это сечение конуса в задании в). S2=0,5·СК·СМ·sin30°=0,5·12·12·0,5=36 см²
Дано: шар с центром в точке
R=13- радиус шара
плоскость а -сечение шара
р(а, О)=5 (расстояние от центра шара О до плоскости а
Найти: r-радиус круга в сечении
Решение
Сечением будет круг. Найдем его радиус. От центра шара до центра сечения 5 - это катет треугольника, который получится, если соединим центр шара, центр сечения и точку пересечения шара с его сечением. 13 - гипотенуза, по теорПифагора:r=√13²-5²=√144=12. S=πr²=π144=144πкв.ед
ΔАСВ - равнобедренный ОС в равнобедренном треугольнике одновременно является высотой, медианой и биссектрисой. Значит
∠АСО=∠ВСО=60° так как ∠АСВ по условию равен 120°.
ΔВСО. ∠ОВС=30°. ВС=2СО=2·6=12 см.
Образующая конуса равна 12 см.
ОВ²=ВС²-ОС²=144-36=108; ОВ=√108=6√3 см.
Радиус основания R=6√3 см. Площадь основания S=πR²=108π см²
а) Боковая поверхность конуса S1=πRL=12·6√3 π см².
б) Площадь полной поверхности конуса 108π+72√3 π=(408+72√3)π см²
в) ΔКСМ - это сечение конуса в задании в).
S2=0,5·СК·СМ·sin30°=0,5·12·12·0,5=36 см²