В равнобедренном треугольнике медиана, проведенная из вершины треугольника, является биссектрисой и высотой. Биссектрисой она является потому, что два получившихся треугольника равны по трем сторонам, а поскольку они равны, то и углы у вершины равны, а значит - биссектриса. Высотой она является потому, что в одном из полученных треугольников сумма углов треугольника должны равняться 180, но поскольку два угла треугольника являются половиной суммы большого треугольника, следовательно, они равны в сумме 90, а значит угол при основании(где медиана пересекает основание) тоже 90, значит она - высота.
Проведём в трапеции ABCD высоты BE и CF из тупых углов. Четырехугольник BCFE является прямоугольником (противоположные стороны попарно параллельны, тогда это параллелограмм, то так как есть прямой угол, это прямоугольник), поэтому EF=BC. Известно, что AD-BC=6, тогда AD-EF=6, откуда AE+DF=6. Так как трапеция равнобокая, AE=DF=6/2=3. Рассмотрим треугольник ABE. Он прямоугольный, так как BE - высота трапеции, кроме того, его гипотенуза AB в 2 раза больше катета AE. Значит, угол лежащий против катета AE - угол ABE - равен 30 градусам. Тогда второй острый угол этого треугольника - BAD - равен 90-30=60 градусам. В равнобокой трапеции углы при большем основании равны, тогда угол CDA также равен 60 градусам. Углы при меньшем основании также равны, каждый из них равен 90+30=120 градусам (ABC=ABE+EBC=30+90=120).
Биссектрисой она является потому, что два получившихся треугольника равны по трем сторонам, а поскольку они равны, то и углы у вершины равны, а значит - биссектриса.
Высотой она является потому, что в одном из полученных треугольников сумма углов треугольника должны равняться 180, но поскольку два угла треугольника являются половиной суммы большого треугольника, следовательно, они равны в сумме 90, а значит угол при основании(где медиана пересекает основание) тоже 90, значит она - высота.
ответ: углы равны 60, 60, 120, 120 градусам.