Трапеция АВСД, АВ=СД, уголАВД=120, АВ=ВС=СД, в равнобочной трапеции диагонали равны и при пересечении образуют два ровнобедренных треугольника основаниями которых есть основания трапеции (из свойств трапеции) треугольники ВОС и АОД равнобедренныеугол ДВС=уголАСВ =х, но АВ=ВС треугольник АВС равнобедренный, уголАСВ-уголВАС =х, уголАСВ=уголСАД как внутренииие разносторонние =уголАДВ=х треугольникАВД, уголАВД+уголВАС+уголСАД+уголАДВ=180, 120+х+х+х=180, 3х =60, х =20, уголА=2х=20*2=40=уголД, уголВ=120+20=140=уголС
Длина этого прямоугольника по условию задачи 30+10=40 см Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора. d²=40²+30²= Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5. Диагональ равна 50 см
в равнобочной трапеции диагонали равны и при пересечении образуют два ровнобедренных треугольника основаниями которых есть основания трапеции (из свойств трапеции)
треугольники ВОС и АОД равнобедренныеугол ДВС=уголАСВ =х, но АВ=ВС треугольник АВС равнобедренный, уголАСВ-уголВАС =х, уголАСВ=уголСАД как внутренииие разносторонние =уголАДВ=х
треугольникАВД, уголАВД+уголВАС+уголСАД+уголАДВ=180,
120+х+х+х=180, 3х =60, х =20, уголА=2х=20*2=40=уголД, уголВ=120+20=140=уголС
Биссектриса прямого угла отсекает от прямоугольника равнобедренный треугольник с катетами, равными 30 см, так как она делит сторону на отрезки 30 см и 10 см, начиная от ближайшей до этого угла вершины.Получился прямоугольник с длиной 40 см и шириной 30 см.Диагональ можно найти, применив теорему Пифагора.
d²=40²+30²=
Но я считать не буду. Этот треугольник имеет катеты, отношение которых 3:4, поэтому он относится к "египетским" треугольникам, и гипотенуза его ( диагональ прямоугольника) пропорциональна этому отношению 3:4:5.
Диагональ равна 50 см