Вероятно, подразумевается, что а лежит вне окружности. если так, то проведем радиусы от центра окружности о до точек касания в и с. и соедини центр окружности с точкой а. рассмотрим получившиеся треугольники аво и асо, в них: угол аво = угол асо = 90 гр. (св-во касательных) , следовательно, треугольники аво и асо прямоугольные. а чтобы доказать равенство двух прямоуг. треуг-ов достаточно найти 2 равных элемента: - катет ов = катет ос (радиусы окружности) - оа - общ. гипотенуза из этого следует, что треугольники равны, следовательно все элементы этих треуг-ов равны. а следовательно равны и катеты ас и ав ч. т. д.
A(0;0;0) ; B(0 ;1; 0) ; C(1;1;0) ; D(1;0;0) ;
A₁(0;0;1) ;B₁(0 ;1; 1) ; C₁(1;1;1) ; D₁(1;0;1) .
AD₁(1;0;1) и BA₁(0 ; -1;1).
Скалярное произведение
AD₁. BA₁ = 1*0 +0*(-1) +1*1 =1 ;
AD₁. BA₁ =|AD₁|. |BA₁|*cos(AD₁^BA₁) (определение скалярного произведения) ;
* * * модуль(длина) векторов |AD₁| =√(1²+0²+1²) =√2 ; |BA₁| = √(0²+(-1)²+1²) =√2 * * *
√2*√2cosα =1 ;
cosα =1/2.
α =60°.
BD(1; -1; 0) и DC₁(0;1;1).
BD*DC₁=1*0 +(-1)*1+0*1= -1.
√2*√2 cosβ = - 1 ;
cosβ = -1/2 ;
β = 120°.