Довжина перпендикуляра, проведеного з точки до прямої, дорівнює 7 см, а довжина цієї похилої, проведеної із цієї самої точки, - 25 см. Знайдіть проекцію цієї похилої на дану пряму.
Треугольники ВОС и АОД - прямоугольные и равнобедренные, т. к. трапеция равнобедренная. Высота проходящая через точку пересечения диагоналей будет осью симметрии. И делит указанные выше треугольники точно пополам Получившиеся треугольники ОМС и ОМВ - тоже равнобедренные, тк у них один угол = половина ПРЯМОГО УГЛА (пересечение перпендикулярных диагоналей) , а второй угол =90 градусов (т. к. высота) . Поэтому на третий тоже остаётся половина 90 градусов. Т. е. углы при основаниях равны, след-но треугольник равнобедрен. А это значит, что ВМ=МО. Но ВМ = половинка ВС, которая =12, т. е. ВМ=6=МО=6. Так?
Аналогично рассматривает треугольник АОД, который тоже равнобедрен, который тоже высота делит пополам на два равнобедренных, а значит NO=ND=NA=10 А высота всей трапеции = NO+OM=6+10 = 16. А площадь = (ВС+АД) *MN/2
1. Свойство касательных к окружности, проведенной из одной точки: отрезки касательных равны. х-радиус вписанной окружности (см. рисунок в приложении) Учитывая, что периметр равен 54, составляем уравнение: х+х+х+х+3+3+12+12=54 4х+30=54 4х=24 х=6
2. Из условия: ∠С=х ∠А=4х ∠В=4х-58°
Так как четырехугольник вписан в окружность, то ∠А+∠С=180° ∠В+∠Д=180°
4х+х=180° 5х=180° х=36°
Тогда ∠С=36° ∠А=4х=4·36°=144° ∠В=4х-58°=144°-58°=86°
Высота проходящая через точку пересечения диагоналей будет осью симметрии. И делит указанные выше треугольники точно пополам
Получившиеся треугольники ОМС и ОМВ - тоже равнобедренные, тк у них один угол = половина ПРЯМОГО УГЛА (пересечение перпендикулярных диагоналей) , а второй угол =90 градусов (т. к. высота) . Поэтому на третий тоже остаётся половина 90 градусов. Т. е. углы при основаниях равны, след-но треугольник равнобедрен.
А это значит, что ВМ=МО. Но ВМ = половинка ВС, которая =12, т. е. ВМ=6=МО=6. Так?
Аналогично рассматривает треугольник АОД, который тоже равнобедрен, который тоже высота делит пополам на два равнобедренных, а значит NO=ND=NA=10
А высота всей трапеции = NO+OM=6+10 = 16.
А площадь = (ВС+АД) *MN/2
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен 54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6
2. Из условия:
∠С=х
∠А=4х
∠В=4х-58°
Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°
4х+х=180°
5х=180°
х=36°
Тогда
∠С=36°
∠А=4х=4·36°=144°
∠В=4х-58°=144°-58°=86°
∠В+∠Д=180° ⇒ ∠Д=180°-∠В=180°-86°=94°
ответ. ∠А=144°
∠В=86°
∠С=36°
∠Д=94°