пусть дана трапеция АВСД где АВ =1.8 , СД=1.2 - основания. Боковые стороны трапеции пересекаются в точке К . Итак получается маленький треугольник АСК ,который подобен большому треугольнику СКД т.к. угол С у них общий и АВ параллельно СД следовательно угол А равен углу С , а угол В равен углу Д . Из подобия этих треугольников следует отношение СК/АК=СД/АВ . Мы знаем , что СК=АК+АС. Осталось только подставить в получившееся выражение числа и решить уравнение. 1.8/1.2=(1.5+АК)/АК 1.8АК=1.8+1.2АК 0.6АК=1.8 АК=3 . Аналогично поступим со стороной КВ. КВ/КД=АВ/СД КВ=2.4
Соединив центры K и М окружностей
между собой и каждый из них с точкой
касания, получим два треугольника с
общей вершиной в точке А на отрезке между
точками касания окружностей с прямой.
Радиус, проведенный к касательной
в точку касания, перпендикулярен ей
( свойство),
Получившиеся прямоугольные треугольники
подобны по равным вертикальным углам и
накрестлежащим у их центров.
Пусть радиус меньшей окружности будет r,
а большей - R, и пусть часть отрезка между
их точками касания у меньшей окружности
будет х.
Тогда отрезок у большей окружности 5-х
( см. рисунок)
Тогда из подобия треугольников следует
отношение:
r:R=x:(5-x)
4:8=x:(5-x)
8х=20-4x
12x=20
х=5/3- длина отрезка у меньшей окружности
5-5/3=10/3 длина отрезка у большей
окружности
По т.Пифагора
KA2=42+(5/13)2
KA2=16+25/9=169/9
KA=13/3
Из треугольника в большей окружности
MA2=82+(10/3)2=676/9
MA=26/3
KA+MA=13/3+26/3=39/3=13
KM=13 см
наверное так
пусть дана трапеция АВСД где АВ =1.8 , СД=1.2 - основания. Боковые стороны трапеции пересекаются в точке К . Итак получается маленький треугольник АСК ,который подобен большому треугольнику СКД т.к. угол С у них общий и АВ параллельно СД следовательно угол А равен углу С , а угол В равен углу Д . Из подобия этих треугольников следует отношение СК/АК=СД/АВ . Мы знаем , что СК=АК+АС. Осталось только подставить в получившееся выражение числа и решить уравнение. 1.8/1.2=(1.5+АК)/АК 1.8АК=1.8+1.2АК 0.6АК=1.8 АК=3 . Аналогично поступим со стороной КВ. КВ/КД=АВ/СД КВ=2.4
Объяснение: