[1]Диагонали прямоугольника ABCD пересекаются в точке О, ∠АВО = 36°. Найдите ∠ АОD.
По свойству прямоугольника его диагонали равны и точкой пересечения делятся пополам, при этом образуя две пары равных и равнобедренных треугольников ⇒ АО = СО = ВО = ОD ⇒ ΔAOB - равнобедренный, так как АО = ВО. Углы при основании равнобедренного треугольника равны: ∠АВО = ∠ВАО = 36°
[5]Высота ВМ, проведенная из вершины угла ромба АВСD образует со стороной АВ угол в 30°, АМ = 4 см. Найдите длину диагонали ВD ромба, если точка М лежит на стороне АD.
В прямоугольном ΔАВМ: катет, лежащий против угла в 30°, равен половине гипотенузы ⇒ АВ = 2•АМ = 2•4 = 8 см
Сумма углов в треугольнике составляет 180°: ∠ВАМ = 180° - 90° - 30° = 60°
В ромбе все стороны равны: АВ = ВС = CD = AD = 8 см
ΔBAD - равнобедренный, так как AB = AD = 8 см. В равнобедренном треугольнике углы при основании равны: ∠ABD = ∠ADB = (180° - ∠BAD)/2 = (180° - 60°)/2 = 60° ⇒ ∠BAD = ∠ABD = ∠ADB = 60°
Значит, ΔABD - равносторонний, AB = AD = BD = 8 см
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC и из этого треугольника найдем угол SCB. Найдем сторону квадрата: BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4 ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB: SB²=SD²-BD² SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3. Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3 tg∠SCB=√3, ∠SCB=60 градусов
По свойству прямоугольника его диагонали равны и точкой пересечения делятся пополам, при этом образуя две пары равных и равнобедренных треугольников ⇒ АО = СО = ВО = ОD ⇒ ΔAOB - равнобедренный, так как АО = ВО. Углы при основании равнобедренного треугольника равны: ∠АВО = ∠ВАО = 36°
∠АОD = ∠ABO + ∠BAO = 2•∠ABO = 2•36° = 72° - по свойству внешнего угла ∠АОD
ответ: 72°
[2]Найдите углы прямоугольной трапеции, если один из углов равен 20°.В прямоугольной трапеции присутствуют два прямых угла при одной боковой стороне, при другой - острый и тупой угол ⇒ ∠ADC = 20°, ∠ABC = 90° , ∠BAD = 90°. Сумма углов в четырёхугольнике составляет 360° ⇒ ∠BCD = 360° - 90° - 90° - 20° = 180° - 20° = 160°
ответ: 20° , 90° , 90° , 160°
[3]Стороны параллелограмма относятся как 1:2, а его периметр равен 30 см. Найдите стороны параллелограмма.По свойству параллелограмма его противолежащие стороны попарно параллельны и равны ⇒ AB = CD , BC = AD
Пусть AB = x, тогда BC = 2x, составим уравнение:
P (abcd) = 2•(AB + BC)
30 = 2•(x + 2x) ⇒ 6x = 30 ⇒ x = 5 см
Значит, AB = CD = 5 см, BC = AD = 2•5 = 10 см
ответ: 5 см, 10 см, 5 см, 10 см
[4]В равнобедренной трапеции сумма углов при большем основании равна 96°. Найдите углы трапеции.По свойству равнобедренной трапеции углы при его основаниях равны ⇒ ∠АВС = ∠BCD , ∠BAD = ∠CDA
По условию ∠BAD + ∠CDA = 96° ⇒ 2•∠BAD = 96° ⇒ ∠BAD = ∠CDA = 48°
Сумма углов в четырёхугольнике составляет 360° ⇒ ∠ABC + ∠BCD = 360° - 48° - 48° ⇒ ∠ABC + ∠BCD = 264° ⇒ 2•∠ABC = 264° ⇒ ∠ABC = ∠BCD = 132°
ответ: 48° , 48° , 132° , 132°
[5]Высота ВМ, проведенная из вершины угла ромба АВСD образует со стороной АВ угол в 30°, АМ = 4 см. Найдите длину диагонали ВD ромба, если точка М лежит на стороне АD.В прямоугольном ΔАВМ: катет, лежащий против угла в 30°, равен половине гипотенузы ⇒ АВ = 2•АМ = 2•4 = 8 см
Сумма углов в треугольнике составляет 180°: ∠ВАМ = 180° - 90° - 30° = 60°
В ромбе все стороны равны: АВ = ВС = CD = AD = 8 см
ΔBAD - равнобедренный, так как AB = AD = 8 см. В равнобедренном треугольнике углы при основании равны: ∠ABD = ∠ADB = (180° - ∠BAD)/2 = (180° - 60°)/2 = 60° ⇒ ∠BAD = ∠ABD = ∠ADB = 60°
Значит, ΔABD - равносторонний, AB = AD = BD = 8 см
ответ: 8 см
Найдем сторону квадрата:
BD²=2BC², (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания) найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов