Нехай прямі АВ та СМ перетинаються в т.О. Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою. Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою. Нехай ∠СОВ+∠ВОМ+∠АОМ=286°. Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної. Сума суміжних кутів дорівнює 180°. ∠СОВ+∠ВОМ=180°, бо вони суміжні. ∠АОМ+∠АОС=180°, бо вони суміжні. Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°: ∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180° ∠СОВ+∠ВОМ+∠АОМ+∠АОС=360° Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить 286°+∠АОС = 360° ∠АОС=360-286 ∠АОС=74°. Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то ∠СОВ+74°=180° ∠СОВ=180°-74° ∠СОВ=106°. Виходить, що ∠СОВ=∠АОМ=106°.
Трапеция АВСД (боковые стороны АВ=СД=3, диагональ АС=ВД=3, <АСД=90°) Из прямоугольного ΔАСД: АД=√(АС²+СД²)=√9+16=√25=5 Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу) СН=√АН*НД Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований АН=(АД+ВС)/2=(5+ВС)/2 НД=(АД-ВС)/2=(5-ВС)/2 СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4 Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4 Приравниваем (25-ВС²)/4=(11+2ВС-ВС²)/4 25=11+2ВС ВС=14/2=7 что невозможно, т.к. ВС<АД Значит в задаче ошибка какая-то
Кут АОС=ВОМ, бо вони вертикальні, а вертикальні кути рівні між собою.
Кут АОМ=СОВ, бо вони вертикальні, а вертикальні кути рівні між собою.
Нехай ∠СОВ+∠ВОМ+∠АОМ=286°.
Суміжними називаються два кути, у яких одна сторона спільна, а дві інші є продовженням одна одної.
Сума суміжних кутів дорівнює 180°.
∠СОВ+∠ВОМ=180°, бо вони суміжні.
∠АОМ+∠АОС=180°, бо вони суміжні.
Виходить, що сума всіх кутів, що утворилися в результаті перетину прямих дорівнює 360°:
∠СОВ+∠ВОМ+∠АОМ+∠АОС=180°+180°
∠СОВ+∠ВОМ+∠АОМ+∠АОС=360°
Оскільки ∠СОВ+∠ВОМ+∠АОМ=286°, виходить
286°+∠АОС = 360°
∠АОС=360-286
∠АОС=74°.
Виходить, що ∠АОС=∠ВОМ=74°.
Тепер оскільки ∠СОВ+∠ВОМ=180°, то
∠СОВ+74°=180°
∠СОВ=180°-74°
∠СОВ=106°.
Виходить, що ∠СОВ=∠АОМ=106°.
Відповідь: два кути по 74° та два кути по 106°.
Из прямоугольного ΔАСД:
АД=√(АС²+СД²)=√9+16=√25=5
Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу)
СН=√АН*НД
Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований
АН=(АД+ВС)/2=(5+ВС)/2
НД=(АД-ВС)/2=(5-ВС)/2
СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4
Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4
Приравниваем
(25-ВС²)/4=(11+2ВС-ВС²)/4
25=11+2ВС
ВС=14/2=7 что невозможно, т.к. ВС<АД
Значит в задаче ошибка какая-то