Дуже треба ! будь ласка навколо рівнобічної трапеції abcd (ad 11bc ) описане коло. знайдіть радіус описаного кола та бічну сторону трапеції. якщо вс = 4 см. zbdc = 30°, zbda = 45°.
а) Чтобы найти длину отрезка BM, можно воспользоваться теоремой косинусов для треугольника ABC:
cos(∠BAC) = BC / AB
cos(∠BAC) = 6 / 9
cos(∠BAC) = 2 / 3
Также известно, что AM = 6. Теперь можно найти длину отрезка BM, используя теорему косинусов для треугольника AMB:
cos(∠AMB) = AM / AB
cos(∠AMB) = 6 / 9
cos(∠AMB) = 2 / 3
BM² = AB² + AM² - 2 * AB * AM * cos(∠AMB)
BM² = 9² + 6² - 2 * 9 * 6 * (2 / 3)
BM² = 81 + 36 - 36
BM² = 81
BM = 9
б) Чтобы найти площадь треугольника AMB, можно воспользоваться формулой для вычисления площади треугольника через стороны и высоту, опущенную на одну из сторон. Высота AMB проходит из вершины M перпендикулярно стороне AB. Таким образом, S(AMB) = (1/2) * BM * AM.
Из пункта а) мы знаем, что BM = 9 и AM = 6. Подставляем значения в формулу и находим площадь:
а) BM = 9
б) S(AMB) = 27
Объяснение:
а) Чтобы найти длину отрезка BM, можно воспользоваться теоремой косинусов для треугольника ABC:
cos(∠BAC) = BC / AB
cos(∠BAC) = 6 / 9
cos(∠BAC) = 2 / 3
Также известно, что AM = 6. Теперь можно найти длину отрезка BM, используя теорему косинусов для треугольника AMB:
cos(∠AMB) = AM / AB
cos(∠AMB) = 6 / 9
cos(∠AMB) = 2 / 3
BM² = AB² + AM² - 2 * AB * AM * cos(∠AMB)
BM² = 9² + 6² - 2 * 9 * 6 * (2 / 3)
BM² = 81 + 36 - 36
BM² = 81
BM = 9
б) Чтобы найти площадь треугольника AMB, можно воспользоваться формулой для вычисления площади треугольника через стороны и высоту, опущенную на одну из сторон. Высота AMB проходит из вершины M перпендикулярно стороне AB. Таким образом, S(AMB) = (1/2) * BM * AM.
Из пункта а) мы знаем, что BM = 9 и AM = 6. Подставляем значения в формулу и находим площадь:
S(AMB) = (1/2) * 9 * 6
S(AMB) = 27
1) По т. Пифагора найдем гипотенузу.
12² + 5² = 144 + 25 = 169 = 13²
гипотенуза = 13 см.
Теперь, когда все стороны треугольника известны нам, найдем периметр.
Р = 5 + 12 + 13 = 30 см.
ответ : Р = 30см.
2) Синус - это отношение противолежащего катета к гипотенузе.
Косинус - это отношение прилежащего катета к гипотенузе.
sinA = √3/2
cosA = 1/2
3) По т. Пифагора найдем АС.
АС = 1² + √3² = 1 + 3 = 4 = 2²
АС = 2
CD - гипотенуза
АС - катет.
CD = 1, a AC = 2
AC больше CD в 2 раза.
Вспомним правило, в котором говорилось, что против угла в 30° лежит катет, равный половине гипотенузы.
АС - катет, и он меньше в 2 раза гипотенузы.
Против катета АС лежит угол САD, и это значит, что он равен 30°
ответ : CAD = 30°