Дві паралельні площини а і В перетинають сторону АВ кута АВС в точках К1 і К,а сторону ВС в точках Р1 і Р відповідно.Знайти довжину відрізка КР якщо ВК1=12см ВК=18 см К1Р1=54см.Доведіть паралельність КР і К1Р1
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
От квадрата со стороной a отсечены:
треугольник, равный 1/8 площади квадрата
два симметричных треугольника с катетами a и a*tg15
Искомая площадь равна
S= a^2(1 -1/8 -tg15) =a^2(8√3 -9)/8
R - радиус описанной окружности
Сторона квадрата a =R√2
Сторона треугольника 12 =R√3
a= 12*√2/√3 =4√6
S= 12(8√3 -9) =96√3 -108
Центр окружности - на пересечении диагоналей квадрата. Треугольник имеет с квадратом общую вершину, следовательно серединный перпендикуляр к основанию совпадает с диагональю квадрата.
AO/OH =2/1 (AH - медиана), AO=OC (радиусы) => OC/OH =2/1.
BD⊥AC, EF⊥AC => BD||EF. По теореме Фалеса EF делит стороны BC и CD в том же отношении, что и OC, то есть пополам.
DAE= (DAB-EAF)/2 =(90-60)/2 =15
tg15 =tg(30/2) =(1-cos30)/sin30 =2(1-√3/2) =2-√3
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.