дві рівні перпендикуляри AB и CD проведено до прямої BD з 1 боку від неї. Знайдіть відстань між точками A і D якщо відрізок BD = 2,50 см (хто нибудь ) ❤️
Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.
Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):
AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9
Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.
Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.
Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):
NB = AN = 9√2
ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:
Данная пирамида не существует.
Объяснение:
Дано условие: Каждое боковое ребро пирамиды должно образовывать с плоскостью основания угол 60°. Такое условие возможно только при условии, что в основании лежит правильный многоугольник - многоугольник, у которого равны все стороны и все углы. Поскольку равнобокая трапеция не является правильным многоугольником, можно сказать, что данная пирамида невозможна. Однако, если представить, что лишь 2 боковых ребрa образуют с плоскостью основания угол 60°, то задача станет вполне решаемой.
Итак, представим пирамиду NABCD, где NO - h - , ∠NDC=∠NCD=60°, ∠ADB=90°, ∠BAD=90°. Из ΔАВD по частному случаю прямоугольных треугольников (30°, 60°, 90°):
AD=9, AB=18, BD=9√3; => DC = 18 - 4,5 - 4,5 = 9
Так как, по условию, ΔNDC - равносторонний, стороны ND= DC= NC= 9.
Исходя из теоремы о трёх перпендикулярах, получаем, что ∠ADC = ∠NCB = 90° (∠ADB= ∠ACB= 90°, ∠NOD= ∠NOC= 90°.
Из прямоугольных равнобедренных треугольников ΔNAD & ΔNBC, по частному случаю прямоугольных треугольников (45°, 45°, 90°):
NB = AN = 9√2
ответ: Боковые рёбра пирамиды, в основании которой лежит равнобокая трапеция, при условии, что ЛИШЬ 2 БОКОВЫХ РЕБРА ND и DC образуют с плоскостью основания угол 60°:
NA= NB = 9√2, ND= DC = 9.
Объяснение:
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й
а
б
в
г
д
е
ё
ж
з
и
й