Дві сторони паралелограма дорівнюють 6 см і 82 см, а кут між ними - 1350. Знайдіть: 1) більшу діагональ паралелограма; 2) площу паралелограма; 3)більшу висоту паралелограма.
Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
Нельзя
Объяснение:
Обозначим ребра, идущие к вершине тетраэдра a, b, c.
А ребра в основании тетраэдра d, e, f.
Допустим, что можно так расставить числа от 1 до 6, что суммы на вершинах будут одинаковы и равны какому-то числу n.
Выпишем суммы на вершинах:
a + b + c = n
a + d + e = n
c + d + f = n
b + e + f = n
Складываем все 4 уравнения:
a+b+c+a+d+e+c+d+f+b+e+f = 4n
Каждое ребро повторяется по 2 раза:
2(a + b + c + d + e + f) = 4n
Сокращаем на 2:
a + b + c + d + e + f = 2n
Получилось, что сумма должна быть чётным числом. Но сумма:
a + b + c + d + e + f = 1 + 2 + 3 + 4 + 5 + 6 = 21 - нечётное.
Поэтому такая расстановка чисел от 1 до 6 на рёбрах тетраэдра невозможна.
И любой ряд из 6 чисел подряд - тоже нельзя так расставить.