( Условие поняла, перевела с переводчика. но ответить могу только на русском, т.к. украинского не знаю)
--------------
Автомобиль двигался по дороге параллельно забору NP и остановился около закрытых ворот КL так, как изображено на рисунке. Известно, что размах створки ворот LМ составляет 2 м, OQ=1 м. Укажите наименьшую из приведенных длин отрезка LO, при которой створка LM не заденет автомобиль, при условии полного открывания ворот. Считайте, что ворота перпендикулярны плоскости дороги и имеют прямоугольную форму. Толщиной створок пренебречь.
ответ: 1,8 м
Объяснение:
Если автомобиль остановится так, как на рисунке, при полном открывании ворот он будет задет ими задет, т.к. частично. расположен в описываемой створкой полуокружности. .
Решение. От Q вправо проведем прямую до пересечения с линией полуокружности в т.В. От В проведем отрезок ВА ( А - на линии забора).
Треугольник МВА - прямоугольный ( опирается на диаметр МА. Перпендикуляр ВН - высота этого треугольника.
Искомое расстояние - LH.
ВН=QO=1 м по построению. Высота прямоугольного треугольника - среднее пропорциональное отрезков, на которые она делит гипотенузу ( здесь - диаметр МА). =>
1.180°-149°= 31°.
7. - (нет картинок, ничего не понятно, если добавишь позже, я отвечу)
8. -
9. -
10. АС= 37+10=47см, ВС= 47-5 =42 см; Р = АВ + АС + ВС = 37+42+47 = 126 см.
11. АВ = Р - ВС - АС = 60-26-15 = 19 см.
12.АС = 35+6 = 41 см, ВС = 41-9 = 32 см, Р = 35+32+41 см
13. ВС = 2ВЕ, т.к. АЕ медиана => ВС = 34,1×2 = 68,2 см.
14. ЕС =
15. ЕС =
16.Рассмотрим ∆AMB, ∠ВАМ +∠АВМ = 180-120= 60°; Из точек А и В проведены биссектрисы => ∠А+В = 60 ×2 = 120°
17.∠В = 180-87-26 = 67°
18. Т.к. ∆АВС равнобедренный, ∠В=∠С => ∠А = 180 - (65+65) = 50°
19. Т.к. ∆АВС равнобедренный, ∠А=∠С; т.к. АD биссектриса, ∠DAC= 1/2 ∠A; Пусть ∠DAC - x, тогда ∠С= 2х, составим уравнение:
2х+х+105=180
3х=75
х=25 => ∠С=2×25 = 50°
20. ∠А= 180-51-53= 76°
Объяснение:
Объяснения написаны вместе с ответами :)
( Условие поняла, перевела с переводчика. но ответить могу только на русском, т.к. украинского не знаю)
--------------
Автомобиль двигался по дороге параллельно забору NP и остановился около закрытых ворот КL так, как изображено на рисунке. Известно, что размах створки ворот LМ составляет 2 м, OQ=1 м. Укажите наименьшую из приведенных длин отрезка LO, при которой створка LM не заденет автомобиль, при условии полного открывания ворот. Считайте, что ворота перпендикулярны плоскости дороги и имеют прямоугольную форму. Толщиной створок пренебречь.
ответ: 1,8 м
Объяснение:
Если автомобиль остановится так, как на рисунке, при полном открывании ворот он будет задет ими задет, т.к. частично. расположен в описываемой створкой полуокружности. .
Решение. От Q вправо проведем прямую до пересечения с линией полуокружности в т.В. От В проведем отрезок ВА ( А - на линии забора).
Треугольник МВА - прямоугольный ( опирается на диаметр МА. Перпендикуляр ВН - высота этого треугольника.
Искомое расстояние - LH.
ВН=QO=1 м по построению. Высота прямоугольного треугольника - среднее пропорциональное отрезков, на которые она делит гипотенузу ( здесь - диаметр МА). =>
ВН²=МН•НА
ML=LA=2 м
Примем LH=x. Тогда МН=2+x, АН= 2-x
(2+х)•(2-х)=1²
4-х²=1 ⇒ х=√3=1,732 ≈1,8 м
Расстояние LO не должно быть менее 1,8 м