Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
В треугольнике АЕD по условию АЕ=ЕD. ∆ АЕD равнобедренный, углы при основании AD равны.
Примем углы при АD равными а.
По свойству внешнего угла треугольника ∠DEB=2a ( т.е. равен сумме внутренних не смежных с ним углов),
Сумма острых углов прямоугольного треугольника 90°. ⇒
В треугольнике BED ∠ В=90°-2а
Из суммы углов треугольника каждый из равных при основании АС углов равнобедренного треугольника АВС равен (180°- АВС):2
∠САВ=(180°-(90°-2а):2=45°+а
∠САВ=угол САD+a⇒
∠САD=CAB-a
Угол СAD=45°+a-a=45°