Дано: А(-1;2) , B(5:-6), C(6;4) Найти: CD Решение: 1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB 2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками. 3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10 D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2) 4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13 ответ: 2√13
К этому решению также приведен чертеж на фотографии.
Периметр прямоугольника равен удвоенной сумме двух его смежных сторон. P = 2(AB+BC),
BC = BK + KC = 8 см + 5 см = 13 см.
AK — биссектрисса угла A, угол BAK = угол KAD = 90°÷2 = 45°,
Рассмотрим треугольник ABK. Сумма углов треугольника равна 180°. угол BKA = 180° – угол ABK – угол BAK = 180° – 90° – 45° = 45°, угол BKA = угол BAK, углы при основании равны, треугольник — равнобедренный, значит боковые стороны равны, AB = BK = 8см.
P = 2(AB + BC) = 2(8см + 13см) = 2 × 21 см = 42 см.
ответ: 42 см
А(-1;2) , B(5:-6), C(6;4)
Найти: CD
Решение:
1) Т.к. CD - медиана, то точка D будет серединой отрезка AB , поскольку из вершины С к стороне AB идёт отрезок, делящий её пополам. => AD=DB
2) Обозначим на координатной плоскости точки A,B,C с их координатами и соединим их отрезками.
3) найдём длину AB и поделки её пополам, чтобы найти середину отрезка и обозначим точку D
AB = √((5+1)^2 + (-8)^2) = √(36+64) = √100 = 10
D имеет координаты по X суммы B(x) + A(x) , делённое на два и Y суммы B(y) + A(y) , делённое на два. Получается D X= (5-1)/2 ; Y= (-6+2)/2 => D(2;-2)
4) CD = √((6-2)^2 + (4+2)^2) = √(16+36) = √52 = √4*13 = 2√13
ответ: 2√13
К этому решению также приведен чертеж на фотографии.