В треугольнике АВС ВМ является высотой, медианой и биссектрисой, т. к. треугольник АВС равнобедренный, из этого следует, что угол DBM=углу EBM. так как треугольник АВС равнобедренный, а точки D и Е являются серединами равных сторон, то AD=DB=BE=EC. в треугольниках DMB и BME сторона ВМ общая, а значит мы можем доказать равенство треугольников по двум сторонам и прилежащему к ним углу (угол DBM=углу MBE, DB=BE, BM - общая сторона), из этого следует что треугольники равны, а значит угол DMB=углу BME.
Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0