1) По формуле S(∆) = ½*h(a)*a, где а - какая-то сторона ∆ АВС, h(a) - высота, проведенная к этой стороне. Тогда S(∆ ABC) = ½*h(a)*a = ½*11*7 = 77/2 = 38.5 см². ответ: S(∆ ABC) = 38.5 см². 2) Найдём второй катет по теореме Пифагора. Пусть катеты равны a и b, а гипотенуза равна с, причем длины всех сторон положительны. Тогда по теореме Пифагора а² + b² = с², теперь подставим числа: 12² + b² = 13², то есть b² = 13² - 12² = (13 - 12)(13 + 12) = 1*25 = 25. Тогда b = √25 = 5, т.к. длина > 0. Значит, катеты данного прямоугольного ∆ равны 12 и 5 см. Тогда по той же формуле (т.к. катеты в прямоугольном ∆ перпендикулярны, то S(прямоугольного ∆) равна полупроизведению его катетов) S(∆) = ½*h(a)*a = ½*b*a = ½*12*5 = 6*5 = 30 см². ответ: второй катет равен 5 см, S(прямоугольного ∆) = 30 см².
1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76
1. Найдем координаты векторов АВ, АС, АД, везде, где речь идет о векторах, над ними ставьте черту или стрелку. Но у меня к сожалению нет такой возможности. Чтобы найти их координаты, надо от координат конца вычесть координаты начала вектора, АВ(-2-3; 1-2;3-4); АВ(-5;-1;-1)
АС(-1;-4;-5); АД(-1;3;-) Объем найдем, как 1/6 от модуля детерминанта или определителя, где в первой строке поставим координаты вектора АВ, во второй АС , в третьей АД, и вычислим этот определитель по правилу треугольника.
v=(1/6)*║-5 -1 -1 ║
║-1 -4 -5║
║ -1 3 1║, здесь линии должны быть непрерывными, как в модуле, а раскрывается этот определитель так
(1/6)*(модуль от (20-5+3+4-1-75))= модуль минус 54/6=9, т.е. объем равен
9 ед. куб. Из формулы объема пирамиды, известного из курса средней школы, v=s*h/3, находим высоту h=3v/s=3*9/15.3=9/5.1=30/17≈1.76