ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Треугольники АОД и ВОС - подобны (все углы равны). Площади подобных треугольников относятся как квадрат коэффициента подобия, то есть:
к² =25/16
к = 5/4
Значит АО/ОС = ОД/ОВ = 5/4 (1)
Воспользуемся формулой для площади тр-ка через две стороны и синус угла между ними (пусть угол АОД = углу ВОС = α):
S(АОД) = (1/2)*АО*ОД*sinα = 25
S(ВОС) = (1/2)*ВО*ОС*sinα = 16
Теперь из второго выразим ВО и ОС:
ВО = 32/(ОС*sinα); ОС = 32/(ВО*sinα) (2)
Эти формулы пригодятся при нахождении площадей тр-ов АОВ и СОД:
S(АОВ) = (1/2)*АО*ОВ*sin(π-α); S(СОД) = (1/2)*ОД*ОС*sin(π-α) (3)
Подставим (2) в (3) и учтем, что sin(π-α)=sinα :
S(АОВ) = 16*(АО/ОС); S(СОД) = 16*(ОД/ОВ)
С учетом (1) получим что эти треугольники равновеликие и их площади равны:
S(АОВ) = S(СОД) = 16 *(5/4) = 20 см².
Площадь всей трапеции состоит из площадей 4-х треугольников:
S(АВСД) = 25 + 16 + 2*20 = 81 см²
ответ: 81 см².
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Треугольники АОД и ВОС - подобны (все углы равны). Площади подобных треугольников относятся как квадрат коэффициента подобия, то есть:
к² =25/16
к = 5/4
Значит АО/ОС = ОД/ОВ = 5/4 (1)
Воспользуемся формулой для площади тр-ка через две стороны и синус угла между ними (пусть угол АОД = углу ВОС = α):
S(АОД) = (1/2)*АО*ОД*sinα = 25
S(ВОС) = (1/2)*ВО*ОС*sinα = 16
Теперь из второго выразим ВО и ОС:
ВО = 32/(ОС*sinα); ОС = 32/(ВО*sinα) (2)
Эти формулы пригодятся при нахождении площадей тр-ов АОВ и СОД:
S(АОВ) = (1/2)*АО*ОВ*sin(π-α); S(СОД) = (1/2)*ОД*ОС*sin(π-α) (3)
Подставим (2) в (3) и учтем, что sin(π-α)=sinα :
S(АОВ) = 16*(АО/ОС); S(СОД) = 16*(ОД/ОВ)
С учетом (1) получим что эти треугольники равновеликие и их площади равны:
S(АОВ) = S(СОД) = 16 *(5/4) = 20 см².
Площадь всей трапеции состоит из площадей 4-х треугольников:
S(АВСД) = 25 + 16 + 2*20 = 81 см²
ответ: 81 см².