Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P и образуют два равных треугольника KPN и MPL. Расстояние между точками K и L равно 19,8 см. Какое расстояние между точками M и N?
1. У равных треугольников все соответственные элементы равны, стороны KP =
и NP =
как соответственные стороны равных треугольников.
∡К
=
° и ∡
=
°, так как смежные с ними углы ∡ KPN = ∡ MPL =
°.
По первому признаку треугольник KPL равен треугольнику
.
2. В равных треугольниках соответственные стороны равны. Для стороны KL соответственная сторона — MN.
MN =
см.
1. Сторона, лежащая против угла ∡M:
MA
AR
RM
2. Угол, лежащий против стороны RM:
∡M
∡A
∡R
3. Углы, прилежащие к стороне AR:
∡M;∡A
∡R;∡M
∡A;∡R
Точка пересечения O — серединная точка для обоих отрезков NG и RV.
Как исполняется первый признак равенства треугольников NOR и GOV?
Так как отрезки делятся пополам, то
1. сторона RO в треугольнике NOR равна стороне
в треугольнике
.
2. Сторона NO в треугольнике NOR равна стороне
в треугольнике
.
Угoл NOR равен углу
как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
50, а проекция наклонной равна 6 см. Чему равна длина перпендикуляра, проведённого из этой же точки к плоскости?
4) Если прямая перпендикулярна двум радиусам круга, как она расположена по отношению к самому кругу?
5) Сколько можно провести прямых перпендикулярных данной прямой через данную точку, если а) эта точка лежит на прямой; б) эта точка не лежит на прямой?
6) Как между собой располагаются две прямые перпендикулярные одной и той же плоскости?
7) Могут ли перпендикуляр и наклонная, проведённые из одной и той же точки, иметь равные длины?