Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P и образуют два равных треугольника KPN и MPL.
Расстояние между точками K и L равно 29,6 см. Какое расстояние между точками M и N?
1. У равных треугольников все соответственные элементы равны, стороны KP =
MP
и NP =
LP
как соответственные стороны равных треугольников.
∡К
=
° и ∡
=
°, так как смежные с ними углы ∡ KPN = ∡ MPL =
°.
По первому признаку треугольник KPL равен треугольнику
MPL
.
2. В равных треугольниках соответственные стороны равны. Для стороны KL соответственная сторона — MN.
MN =
см.
.дано:ABCD-прямоугольник
АВ=5см
АС и ВD- диагоналипересекаютсяв точке О, под уг.60гр.
Рассмотрим образовавшейся треугольник АОВ
АО=ВО по свойству диагоналей в прямоугольнике следовательно треугольник АОВ равнобедреный
УголВАО=углуАВО т.к. труег.АОВ-равнобедренный, угол АОВ=60градусов следовательно Угол ВАО=углу АВО=(180-600):2=60 градусов по теореме о сумме углов треугольника
Т.к. углы в тругольнике равны, то треугольник АОВ равносторонний, следовательно АВ=Ао=ВО=5 см
Диагонали прямоугольника точкой пересечения делятся попалам, следовательно диагональ BD=5+5=10см
одна сторона квадрата h=b=24 - это высота призмы
смежная с ней сторона квадрата P=b=24 - это периметр основания
высота одна и та же h=b=24 - это высота призмы
в правильной треугольной призмы -
сторона основания a=P/3=b/3=24/3=8 см
площадь основания S∆= a^2√3/2=8^2√3/2=64√3/2=32√3 см2
объем призмы V∆=S∆*h=32√3h
в правильной четырехугольной призмы -
сторона основания c=P/4=b/4=24/4=6 см
площадь основания S□= c^2=6^2=36 см2
объем призмы V□=S□*h=36h
V∆ /V□ =32√3h /36h =8√3 / 9 =8√3 : 9
ОТВЕТ V∆ /V□ = 8√3 / 9 =8√3 : 9