Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P и образуют два равных треугольника KPN и MPL. Расстояние между точками K и L равно 15,9 см. Какое расстояние между точками M и N?
1. У равных треугольников все соответственные элементы равны, стороны KP =
и NP =
как соответственные стороны равных треугольников.
∡К
=
° и ∡
=
°, так как смежные с ними углы ∡ KPN = ∡ MPL =
°.
По первому признаку треугольник KPL равен треугольнику
.
2. В равных треугольниках соответственные стороны равны. Для стороны KL соответственная сторона — MN.
MN =
см.
Найти АВ.
cos<A = V(1 - sin^2<A) = V(1 - (23/25)^2) = V(1 - 529/625) = V96/625 = 4V6/25
cos<A = AC / AB > AB = AC / cos<C = 4V6 / (4V6/25) = 4V6 * (25/4V6) = 25 ответ. 25
2 вариант решения.
sin<A = BC/AB = 23/25. Пусть BС = 23х, АВ = 25х. Тогда по теореме Пифагора АВ^2 = AC^2 + BC^2 > (25x)^2 = (4V6)^2 + (23x)^2
625x^2 = 96 + 529x^2
625x^2 - 529x^2 = 96
96x^2 = 96 > x^2 = 1 > x_1 = -1 посторонний корень
х_2 = = 1
АВ = 25х = 25*1 = 25.
ответ. 25.
найти площадь треугольника?
Зная tga=3 легко найти cosa и sina
cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10)
sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10)
Соседний катет AC равен
IACI=IABI*cosa=5*1/корень(10)=корень(10)/2
Площадь треугольника равна
S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75
Второй вариант
Обозначим прямоугольный треугольник как АВС где угол С-прямой
АС=5-гипотенуза ВС и АВ -катеты
tga = ВС/AC =3 или ВС =3АС
Пусть АС =х
Тогда ВС=3х
По теореме Пифагора
АС^2+BC^2=AB^2
x^2+9x^2=25
10x^2=25
x=корень(2,5)
Поэтому катеты равны
AC=корень(2,5)
ВС=3корень(2,5)
Площадь треугольника равна
S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75