Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P и образуют два равных треугольника KPN и MPL. Расстояние между точками K и L равно 15,9 см. Какое расстояние между точками M и N?
1. У равных треугольников все соответственные элементы равны, стороны KP =
и NP =
как соответственные стороны равных треугольников.
∡К
=
° и ∡
=
°, так как смежные с ними углы ∡ KPN = ∡ MPL =
°.
По первому признаку треугольник KPL равен треугольнику
.
2. В равных треугольниках соответственные стороны равны. Для стороны KL соответственная сторона — MN.
MN =
см.
1) Допустим угол при основании равен 42 градуса, значит другой угол при основании тоже равен 42 градуса ( так как в равнобедренном треугольнике при основании углы равны). Сумма всех углов треугольника равна 180 градусов. Значит третий угол будет равен 180-(42+42)= 96 градусов.
Второй случай, когда угол не при основании равен 42 градуса. Так как сумма всех углов треугольника равна 180 градусов, сумма углов при основании будет равна 180-42=138 градусов. А так как они равны, каждый по отдельности будет равен 138:2=69.
2) аналогично первому
l - длина дуги,
С - длина окружности,
S - площадь круга,
1.
С = 2πR, ⇒ R = C / (2π)
S = πR² = π · C² / (2π)² = C² / (4π)
2.
Площадь кольца можно найти отняв от площади большего круга площадь меньшего.
Sб = π·25²
Sм = π· 24²
Sкольца = Sб - Sм = π · 25² - π · 24² = π(25² - 24²) = π(25 - 24)(25 + 24)
Sкольца = π · 49 = 49π см²
3.
Sсект = πR² · α / 360°
Sсект = π · 9 · 20° / 360° = π/2 см²
4.
Sсект = πR² · α / 360°
10π = π · 36 · α / 360°
α = 10π · 360° / (36π) = 100°
5.
l = 2πR · α / 360°
l = 2π · 6 · 120° / 360° = 4π дм
6.
l = 2πR · α / 360°
6π = 2πR · 60° / 360°
6 = R / 3
R = 6 · 3 = 18