Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P и образуют два равных треугольника KPN и MPL. Расстояние между точками K и L равно 45,6 см. Какое расстояние между точками M и N?
Из правильного треугольника АВС: из теоремы Пифагора: высота ВК равна 3 корня из 2. Угол ОАК - это угол между плоскостью АОС и основанием. Поскольку угол ОАК = 30 градусов, то катет ОК равен гипотенузы ОА как катет, который лежит против угла 30 градусов. ОК = ОА/2. Пускай ОК = х, тогда ОА = 2х. Из прямоугольного треугольника ОАК: за теоремой Пифагора: OA^2 = OK^2 + AK^2, 4x^2 = 9 - x^2, 3x^2 = 9, x^2 = 3, x = корень из 3. OK = корень из 3. Объем призмы равен площади основания умножить на высоту: S = So*H = S(ABC)*OK = BK*AC/2*OK = 9 корней из 6.
Пусть AC = 11, BC = 23, AM = 10, M - середина AB.
Найдем AB.
Достроим треугольник до параллелограмма. Докажем, что сумма квадратов всех сторон параллелограмма равна сумме квадратов диагоналей.
Рассмотрим треугольник ACC1. Напишем в нем выражение по теореме косинусов:
CC'^2 = AC'^2 + AC^2 - 2AC*AC'*cos(CAC')
2AC * AC' * cos(CAC') = AC^2 + AC'^2 - CC'^2 = 121 + 529 - 400 = 250
Для треугольника ABC верны соотношения: CB = AC' = 23, ACB = 180° - CAC', тогда
2AC * CB * cos(ACB) = -2AC * AC' * cos(CAC') = -250
Теорема косинусов:
AB^2 = AC^2 + AB^2 - 2AC * CB * cos(ACB) = 529 + 121 + 250 = 900
AB = 30