Два перпендикулярных отрезка KM и LN пересекаются в общей серединной точке P. Какой величины∡ N и ∡ K, если ∡ L = 55° и ∡ M = 35°?
1. Отрезки делятся пополам, значит, KP = , = LP, ∡ = ∡ MPL, так как прямые перпендикулярны и каждый из этих углов равен °. По первому признаку равенства треугольник KPN равен треугольнику MPL.
2. В равных треугольниках соответствующие углы равны. В этих треугольниках соответствующие ∡ и ∡ M, ∡ и∡ L. ∡ K = °; ∡ N = °.
Теорема. Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы.
Пусть в прямоугольном треугольнике АСВ угол В равен 30° (черт. 210). Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник — равносторонний.
Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.
(где S - площадь, a - основание, h - высота треугольника, проведенная к основанию).
Перед решением задачи нужно сделать чертеж. Если основание равнобедренного треугольника совпадает со стороной квадрата, то вершина треугольника лежит на середине противоположной стороны.
Проведем высоту в треугольнике. Так как высота будет перпендикулярна основанию, то есть стороне квадрата, то высота будет равна высоте квадрата.
И так как у квадрата все стороны равны, то площадь треугольника будет равна:
S = 1/2 * a * h = 1/2 * a * a = 1/2 * 4 * 4 = 8 см².
Пусть в прямоугольном треугольнике АСВ угол В равен 30° (черт. 210). Тогда другой его острый угол будет равен 60°.
Докажем, что катет АС равен половине гипотенузы АВ. Продолжим катет АС за вершину прямого угла С и отложим отрезок СМ, равный отрезку АС. Точку М соединим с точкой В. Полученный треугольник ВСМ равен треугольнику АСВ. Мы видим, что каждый угол треугольника АВМ равен 60°, следовательно, этот треугольник — равносторонний.
Катет АС равен половине АМ, а так как АМ равняется АВ, то катет АС будет равен половине гипотенузы АВ.
Площадь треугольника вычисляется по формуле
S = 1/2 * a * h
(где S - площадь, a - основание, h - высота треугольника, проведенная к основанию).
Перед решением задачи нужно сделать чертеж. Если основание равнобедренного треугольника совпадает со стороной квадрата, то вершина треугольника лежит на середине противоположной стороны.
Проведем высоту в треугольнике. Так как высота будет перпендикулярна основанию, то есть стороне квадрата, то высота будет равна высоте квадрата.
И так как у квадрата все стороны равны, то площадь треугольника будет равна:
S = 1/2 * a * h = 1/2 * a * a = 1/2 * 4 * 4 = 8 см².
ответ: 8 см².