Два прямокутних трикутника abc і dbc, площини яких не збігаються, мають спільний катет, а через два інші катети - ac і cd - проведемо площину а(альфа). доведіть, що спільний катет перпендикулярний до будь-якої прямої c площини а(альфа)
p.s. желательно с рисунком
АО = ОВ – как радиусы окружности →
∆ АОВ – равнобедренный
Высота , проведённая в равнобедренном треугольнике к основанию, является и медианой и биссектрисой
АН = НВ = 1/2 × АВ = 1/2 × 30 = 15
Рассмотрим ∆ АОН (угол АНО = 90°):
По теореме Пифагора:
АО² = ОН² + АН²
АО² = 20² + 15² = 400 + 225 = 625
АО = 25
Значит, АО = ОВ = ОС = ОD = 25 – как радиусы окружности
Рассмотрим ∆ ОDE (угол ОЕD = 90°):
По теореме Пифагора:
OD² = OE² + ED²
ED² = 25²– 15² = 625 – 225 = 400
ED = 20
ОС = ОD – как радиусы окружности →
∆ СОD – равнобедренный
Высота , проведённая в равнобедренном треугольнике к основанию, является и медианой и биссектрисой
Значит, CD = 2 × ED = 2 × 20 = 40
ОТВЕТ: CD = 40
Дано: окружность с центром О. АВ и СД - хорды, АВ=30, КО=20; МО=15. Найти СД.
Решение: КО⊥АВ и МО⊥СД, т.к. перпендикуляр - кратчайшее расстояние между точкой и прямой. Треугольники АОВ и СОД - равнобедренные, причем АО=ОВ=ОС=ОД как радиусы окружности.
Рассмотрим ΔАОВ; КО - высота и медиана, поэтому АК=КВ=АВ:2=30:2=15. Найдем ОВ из ΔОКВ; ОВ=25, т.к. ΔОКВ - "египетский".
Рассмотрим ΔДОМ; ОМ - высота и медиана, поэтому СМ=ДМ. ОД=ОВ=25, ОМ=15, значит, ДМ=20 (по свойству египетского треугольника). СД=СМ+ДМ=20+20=40 (ед.)
ответ: 40.