Два рівнобедрені трикутники АВС і АВС1 зі спільною основою лежать у різних площинах. Установіть взаємне розміщення прямих, які містять сторони АС і АС1
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Вот пришло в голову решение :) Так-то задачка ерундовая :) Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) ) Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC; то есть ∠BAC = ∠BA1C; Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому ∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK; следовательно ∠BAC = ∠BMK; и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой. ∠KHB = ∠A; ∠MHB = ∠C; BK = BH*sin(A) = BC*sin(C)*sin(A); BM = BH*sin(C) = BA*sin(A)*sin(C); То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны. коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Объяснение:
вот все правильно
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK;
и треугольники ABC и BMK имеют равные углы. То есть, подобны.
Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.
Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK = BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.