Два равнобедренных треугольника имеют общее основание длиной 20 см. угол между плоскостями треугольника 60 градусов,а их площади 60 см^2 и 160 см^2. найти расстояние между вершинами треугольников
Пусть К, Р, M, N - середины сторон соответственно АВ, BC, CD, AD, тогдаВ ΔABD: AK = KB, AN = ND ⇒ KN - средняя линия" Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны "KN || BD, KN = BD/2В ΔBCD: BP = PC, CM = MD ⇒ PM - средняя линияPM || BD, PM = BD/2Значит, KN || PM , KN = PMИз этого следует, что четырёхугольник KPMN - параллелограмм (по признаку параллелограмма)KN = BD/2 , KP = AC/2Р kpmn = 2•(KN + KP) = 2•(BD/2 + AC/2) = BD + AC = 12 + 10 = 22 смОТВЕТ: Р = 22 см
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)