Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
Из точки А к плоскости проведены две наклонные АВ и АС, расстояние от А до плоскости - перпендикуляр АН, проекции наклонных - НВ и НС. 1) если АВ=х см, АС=х+26 см, НВ=12 см и НС=40 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-144 и АН²=АС²-НС²=(х+26)²-1600=х²+52х-924. Приравниваем х²-144=х²+52х-924, х=780:52=15 см это АВ и АС=15+26=41 см. 2) если АВ=х см, АС=2х см, НВ=1 см и НС=7 см. Из прямоугольных треугольников АВН и АСН по т. Пифагора выразим АН²=АВ²-НВ²=х²-1 и АН²=АС²-НС²=4х²-49. Приравниваем х²-1=4х²-49, х²=48:3=16 см это АВ и АС=2*16=32 см.
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.